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Introduction

This is a working manual for the VVPF software. The document is in its infancy, so there is still a lot
of work left. In its current state, this manual is practical useless. This is something I hope to change in
the future.

The current report is about the VVPF as well as on the PFI-theory.

Chapters 1 to 3 are based on, and taken from the following Ph.D. thesis:

J. E. Wallevik, Rheology of Particle Suspensions; Fresh Concrete, Mortar and Cement Paste with
Various Types of Lignosulfonates, Ph.D. thesis, Department of Structural Engineering, The Norwe-
gian University of Science and Technology, Trondheim, 2003 (ISBN 82-471-5566-4; ISSN 0809-103X).
http://publications.uu.se/ntnu/theses/abstract.xsql?dbid=319

A reference number in this report designates the corresponding page number of the Ph.D. thesis. I am
just using it now as a basis. In the future version of this documentation, I will rather make a reference
where appropriate to the above phd thesis.
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Chapter 1

Microstructural material model

1.1 Proposed material model

Here, the perikinetic coagulation rate theory, established by Verwey and Overbeek is employed [?]. In
their calculation, the decreasing number of particles nt (in the suspension) is expressed as follows:

−dnt

dt
=
H n2

t

n3
(γ̇ = 0) (1.1)

The previous work done by Hattori and Izumi and used in this article, consists of the following three
equations [?]:

η ∝ U
2/3
3 (1.2)

nt = n3 − Jt (1.3)
Jt = n3 U3 (1.4)

−dnt

dt
= −d(n3 − Jt)

dt
=
dJt

dt
= n3

dU3

dt
(1.5)

n3
dU3

dt
= H

(n3 − Jt)2

n3
= H

n2
3(1− U3)2

n3
(1.6)

n3
dU3

dt
= H(γ̇, t, . . .)

n2
3(1− U3)2

n3
+ f1(I(γ̇, t, . . .), γ̇) (1.7)

dU3

dt
= H(γ̇, t, . . .) (1− U3)2 + f2(I(γ̇, t, . . .), γ̇) (1.8)

dU3

dt
= f(U3, H, I, γ̇, dγ̇/dt, t, . . .) ∧ U3 = Uo at t = 0 (1.9)

µ̃ = ξ1 U
2/3
3 (1.10)

τ̃o = ξ2 U
2/3
3 (1.11)

Although determined by empirical means in this work, the two terms ξ1 and ξ2 are material parameters
depending, among other factors, on the surface roughness of the cement particles and phase volume Φ.

η =
(
µ+

τo
γ̇

)
+
(
µ̃+

τ̃o
γ̇

)
(1.12)
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Chapter 2

Computational Rheology

2.1 The Constitutive Equation [pp.16-20]

For many fluids, the constitutive equation is represented as σ = −p I + T, where the second order tensor
T = Tijiiij is known as the extra stress tensor and p is the pressure. The term I, is known as the
unit dyadic and its index equivalence is the Kronecker delta, written as δij where δij = 1 if i = j
and δij = 0 if i 6= j. In index notation, the tensor σ is written as: σij = −pδij + Tij. According to
customary understanding, σij designates a stress in j-direction on a plane that has a normal unit vector
pointing in i-direction. Furthermore, it can be shown that this tensor is symmetric: σij = σji. The same
considerations applies for Tij. In [pp.21-28], this tensor is associated with the exchange of momentum
between solid particles of the continuum.

The constitutive equation used in this report has the following functional form [p.17]:

σ(x, t) = −p(x, t)I + T(x, t) ∧ T(x, t) = 2 η(x, t) ε̇(x, t) (2.1)

where p is the pressure and η is the shear viscosity. Example of a shear viscosity equation is of the
Bingham fluid η = µ + τo/γ̇. As will be clear later in this report, no specific shear viscosity equation is
assumed in the analysis. It can be of any type, with or without time-dependence.

The tensor ε̇ = ε̇ij iiij is called the strain rate tensor and is given by [See p.17]:

ε̇ =
1
2
(
∇v + (∇v)T

)
=

1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
iiij (2.2)

In the last part of the above, a so-called indicial notation in Cartesian coordinate system, is used. The
velocity gradient tensor ∇v = [∂vi/∂xj]iiij can be looked upon as a comparison of velocities between
CPs, placed around the CP in question. With CP, it is meant continuum particle (or fluid particle) [see
pp.11-16 about the CP]. The term γ̇ is known as the shear rate and is a function of the strain rate tensor
as shown with Equation 2.3 [p.24].

γ̇ =
√

2 ε̇ : ε̇ =
√

2 ε̇ijε̇ij (2.3)

The governing equation (i.e. Newton’s second law for the CP) is [pp.11-16]:

ρ(x, t)
(
∂v(x, t)
∂t

+ v(x, t) · ∇v(x, t)
)

= ∇ · σ(x, t) + ρ(x, t) g (2.4)

2.2 Velocity Profile [p.56; p.155; pp.391-392]

Because of convenience, the cylindrical coordinates will be used here. By using the general velocity field
v = vr(r, θ, z, t) ir + vθ(r, θ, z, t) iθ + vz(r, θ, z, t) iz it is impossible to gain an analytical solution. But
fortunately some reasonable assumptions about the flow can be made, which makes it easier to obtain
such a solution:

1. With low Reynolds number (i.e. with low speed and high shear viscosity η) the flow is stable1 and
it is possible to assume a flow symmetry around the z-axis: v = vr(r, θ, z, t) ir + vθ(r, θ, z, t) iθ.

1As random motion (Brownian motion) of water molecules (in water) is not understood as fluid mechanical turbulence,
then neither are the random and spontaneous velocity contributions of individual solid particles (in suspension) understood
as such. Rather, when groups of continuum particles (CPs), inside the continuum, start to travel coherently in circular
paths, as a part of eddies or vortices of varying size, it is possible to define turbulence. More precisely, turbulent flow is
characterized by a mixing action caused by eddies of varying size, throughout the continuum [see citation Roberson in PhD
thesis].
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2. With the lower unit of the inner cylinder (see Figure 3.4), the effect of shearing from the bottom
plate is eliminated. Therefore a height independence can be assumed in the velocity function: v =
vr(r, θ, t) ir + vθ(r, θ, t) iθ. For both ConTec viscometers, this assumption is verified by numerical
means in ChapterPhD 8 (see FigPhD 8.16, Page 197 and FigPhD 8.21, Page 200).

3. Due to the circular geometry of a coaxial cylinders viscometer (see FigPhD 3.1) it is reasonable to
assume pure circular flow with θ-independence.

v = vθ(r, t) iθ (2.5)

A physical description of velocity v is given by EqPhD 2.6 on Page 13 (see also the discussion below
EqPhD 2.6).

From here on, it is assumed that the outer cylinder rotates counterclockwise, giving vθ(r, t) ≥ 0.
This is done to simplify the calculations that follow. For both ConTec viscometers involved, the outer
cylinder actually rotates clockwise. Nevertheless, the calculations apply fully for either clockwise or
counterclockwise rotating outer cylinder.

2.3 Shear Stress

From Equation 2.5 the velocity gradient tensor ∇v can be calculated, which through Equation 2.2, gives
the strain rate tensor:

ε̇ =
1
2

(
∂vθ(r, t)
∂r

− vθ(r, t)
r

)
(iriθ + iθir) (2.6)

Substituting the result from Equation 2.6 into Equation 2.3 gives the shear rate that applies inside the
test material.

γ̇ =
∣∣∣∣∂vθ(r, t)∂r

− vθ(r, t)
r

∣∣∣∣ (2.7)

c.f. SectionPhD 3.3.3, Page 58 (i.e. from a physical point of view, then τ(r, t) ≥ 0 and η(r, t) ≥ 0 in
Eq. (2.8)). Combining Equations 2.1 and 2.6, yields the extra stress tensor:

T = η(r, t)
(
∂vθ(r, t)
∂r

− vθ(r, t)
r

)
(iriθ + iθir) = τ(r, t) (iriθ + iθir) (2.8)

Although the shear viscosity η = η(γ̇, t, . . .) is dependent on various of variables, the basic independent
variables are r and t, i.e. η = η(r, t). The term τ(r, t) is now extracted directly from Equation 2.8:

τ(r, t) = η(r, t)
(
∂vθ(r, t)
∂r

− vθ(r, t)
r

)
⇒ τi = ηi

[
∂vθ
∂r
− vθ

r

]
i

(2.9)

C.f. Eq. (2.7).
The von Mises shear stress is τ2 = −IIPS = (T : T)/2 = (2 η)2 ε̇ : ε̇/2 = η2 (2 ε̇ : ε̇) = (η γ̇)2.

2.4 Numerical Governing Equation

Using the velocity profile Eq. (2.5) in Eqs. (2.1), (2.4) and (2.8) gives:

ρ
∂vθ(r, t)
∂t

=
∂τ(r, t)
∂r

+ 2
τ(r, t)
r

(2.10)

The term τ(r, t) is given by Eq. 2.9. The above equation applies in the θ-direction. In this derivation, two
other equations are also produced: 0 = −∂p(r, z, t)/∂z − ρ g and −ρv2

θ(r, t)/r = −∂p(r, z, t)/∂r. These
apply in z- and r-directions, respectively. Fortunately, they are not directly coupled to Equation 2.10
and hence need not to be included in the numerical simulation.
When discretizing the governing Equation ?? one might be tempted to put Equation ?? in this equation
and then expanding the velocity terms, for examples from ∂(η v)/∂r to v ∂η/∂r+η ∂2v/∂r2 and so forth.
According to Langtangen then such a procedure should be avoided [?]. Therefore a discretization of
Equation ?? as it is, will be done.
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In discretizing the governing Equation ?? a centered differencing in space will be used. This is done
to incrase accuracy from O(∆r) to O(∆r)2 [?]. Also, an implicit sceme (see for example [?]) will be used
in the time stepping to increase stability in the numerical calculations.

ρ
vk+1
i − vk

i

∆t
=
τk+1
i+ 1

2
− τk+1

i− 1
2

∆r
+ 2

τk+1
i

ri
(2.11)

vk+1
i − vk

i = β(τk+1
i+ 1

2
− τk+1

i− 1
2

) + θiτ
k+1
i (2.12)

where β = ∆t/(ρ∆r) and θi = (2 ∆t)/(ρ ri).[
∂vθ
∂r
− vθ

r

]
i

=
vi+ 1

2
− vi− 1

2

∆r
− vi
ri

=
vi+ 1

2
− vi− 1

2

∆r
−

(vi+ 1
2

+ vi− 1
2
)/2

(ri+ 1
2

+ ri− 1
2
)/2

=

[
1

∆r
− 1
ri+ 1

2
+ ri− 1

2

]
vi+ 1

2
−

[
1

∆r
+

1
ri+ 1

2
+ ri− 1

2

]
vi− 1

2
(2.13)

[
∂vθ
∂r
− vθ

r

]
i+ 1

2

=
[

1
∆r
− 1
ri+1 + ri

]
vi+1 −

[
1

∆r
+

1
ri+1 + ri

]
vi (2.14)

[
∂vθ
∂r
− vθ

r

]
i− 1

2

=
[

1
∆r
− 1
ri + ri−1

]
vi −

[
1

∆r
+

1
ri + ri−1

]
vi−1 (2.15)

[
∂vθ
∂r
− vθ

r

]
i

=
vi+ 1

2
− vi− 1

2

∆r
− vi
ri

=
1
2 (vi+1 + vi)− 1

2 (vi + vi−1)
∆r

− vi
ri

=
vi+1 − vi−1

2 ∆r
− vi
ri

(2.16)

τi+ 1
2

=
(
ηi+ 1

2

[
1

∆r
− 1
ri+1 + ri

])
vi+1 −

(
ηi+ 1

2

[
1

∆r
+

1
ri+1 + ri

])
vi

= Ξi+1vi+1 −Θi+1vi (2.17)

τi = ηi
vi+1 − vi−1

2 ∆r
− ηi

vi
ri

=
( ηi

2 ∆r

)
vi+1 −

(
ηi
ri

)
vi −

( ηi
2 ∆r

)
vi−1

= Ψivi+1 − Λivi −Ψivi−1 (2.18)

τi− 1
2

=
(
ηi− 1

2

[
1

∆r
− 1
ri + ri−1

])
vi −

(
ηi− 1

2

[
1

∆r
+

1
ri + ri−1

])
vi−1

= Ξivi −Θivi−1 (2.19)

vk+1
i − vk

i = β [Ξk+1
i+1 v

k+1
i+1 −Θk+1

i+1 v
k+1
i − Ξk+1

i vk+1
i + Θk+1

i vk+1
i−1 ] +

+ θi [Ψk+1
i vk+1

i+1 − Λk+1
i vk+1

i −Ψk+1
i vk+1

i−1 ] (2.20)

vk+1
i − vk

i =
[
β Ξk+1

i+1 + θiΨk+1
i

]
vk+1
i+1 −

[
βΘk+1

i+1 + β Ξk+1
i + θiΛk+1

i

]
vk+1
i +

+
[
βΘk+1

i − θiΨk+1
i

]
vk+1
i−1 (2.21)

vk+1
i − vk

i = Ak+1
i vk+1

i+1 −B
k+1
i vk+1

i + Ck+1
i vk+1

i−1 (2.22)

Ak+1
i vk+1

i+1 − (1 +Bk+1
i )vk+1

i + Ck+1
i vk+1

i−1 = −vk
i (2.23)

Ak+1
i = β Ξk+1

i+1 + θi Ψk+1
i = β ηk+1

i+ 1
2

[
1

∆r
− 1
ri+1 + ri

]
+ θi

ηk+1
i

2 ∆r
(2.24)

Bk+1
i = βΘk+1

i+1 + β Ξk+1
i + θiΛk+1

i =

= β ηk+1
i+ 1

2

[
1

∆r
+

1
ri+1 + ri

]
+ β ηk+1

i− 1
2

[
1

∆r
− 1
ri + ri−1

]
+ θi

ηk+1
i

ri
(2.25)

5



Ck+1
i = βΘk+1

i − θi Ψk+1
i = β ηk+1

i− 1
2

[
1

∆r
+

1
ri + ri−1

]
− θi

ηk+1
i

2 ∆r
(2.26)

From Eq. (1.9) we have

dU3

dt
= f(U3, H, I, γ̇, dγ̇/dt, t, . . .) ∧ U3 = Uo at t = 0 (2.27)

Uk+1
3,i − Uk

3,i

∆t
= f(Uk+1

3,i , Hk+1
i , Ik+1

i , γ̇k+1
i , dγ̇k+1

i /dt, t, . . .) ∧ U3 = Uo at t = 0 (2.28)

2.5 Shear Rate

It is apparent that information about the shear viscosity η at the grid points (i+ 1
2 ) and (i- 1

2 ) is needed.
Since ηi = η(γ̇i, Γ̃i, Θ̃i, k∆t), one must first calculate the shear rate γ̇i at the corresponding points.

γ̇ =
∣∣∣∣∂vθ(r, t)∂r

− vθ(r, t)
r

∣∣∣∣ (2.29)

γ̇i =
∣∣∣∣vi+1 − vi−1

2 ∆r
− vi
ri

∣∣∣∣ (2.30)

γ̇i =
∣∣∣∣vi+ 1

2
− vi− 1

2

∆r
− vi
ri

∣∣∣∣ =

∣∣∣∣∣vi+ 1
2
− vi− 1

2

∆r
−

(vi+ 1
2

+ vi− 1
2
)/2

(ri+ 1
2

+ ri− 1
2
)/2

∣∣∣∣∣
=

∣∣∣∣∣vi+ 1
2
− vi− 1

2

∆r
−
vi+ 1

2
+ vi− 1

2

ri+ 1
2

+ ri− 1
2

∣∣∣∣∣ (2.31)

γ̇i+ 1
2

=
∣∣∣∣vi+1 − vi

∆r
− vi+1 + vi
ri+1 + ri

∣∣∣∣ (2.32)

γ̇i− 1
2

=
∣∣∣∣vi − vi−1

∆r
− vi + vi−1

ri + ri−1

∣∣∣∣ (2.33)

6



Chapter 3

Numerical Results

3.1 Power of the Forces t and ρ g [pp.389-390]

The rate in mechanical effort (or rate of work) conducted on the material volume V (t), from its sur-
roundings, is designated with Ẇ [J/s] and is given by Equation x. The term g · v expresses the rate of
gravitational work done on the CP. The term1 t · v represents the (viscous) rate of work applied on the
CP, from its surroundings.

1t · v = (n · σ) · v = (σ · v) · n.
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