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Abstra
t

This report des
ribes the theoreti
al ba
kground behind a 
on
rete 
asting solver named

vvpfFoam. The work is done within the OpenFOAM framework [1℄ and 
an (at least)

be 
ompiled on versions from 2.2.0 to 2.2.2 (see Appendix B). OpenFOAM is li
ensed

under the GNU General Publi
 Li
ense (Version 3) and as su
h, the same applies to the

solver vvpfFoam. That is, you may use, distribute and 
opy the solver vvpfFoam under

the terms of GNU General Publi
 Li
ense version 3, whi
h is displayed in Appendix C,

or (at your option) any later version.

The aim of the solver is to 
al
ulate the 
oarse aggregate distribution as a fun
tion

of time, with the obje
tive to predi
t the e�e
t of segregation by gravity as well as

by the shear (rate) indu
ed parti
le migration. The solver en
ompasses two theories.

The �rst one is the Volume of Fluid Method (VOF), while the se
ond is the Drift Flux

Model (DFM). It should be noted that the starting developing point of vvpfFoam is the

interFoam solver and as su
h the 
urrent solver 
ould have been named interDFMFoam,

dfmInterFoam, driftFluxInterFoam or similar.

One of the aims with the solver is to simulate operational problems related to un-


ertainties in 
asting predi
tions of fresh 
on
rete (i.e. of newly mixed 
on
rete). These

problems are segregation by gravity as well as segregation by shear (rate) indu
ed parti
le

migration. Improved predi
tion a

ura
y of fresh 
on
rete �ow allows for the design of

more 
omplex and durable 
on
rete stru
tures and additionally allows ready-mix plants

to investigate the e�e
t of stability variation during 
asting of a large/di�
ult stru
ture.

This is extremely important be
ause uneven aggregate distribution 
an in
rease the lo
al

porosity and thus the permeability of 
on
rete. Varying 
ontent of mortar 
auses het-

erogeneous shrinkage and 
reep in a given element. Moreover, high heterogeneity will

in
rease the probability that these phenomena yield high internal stress gradients and

thus 
ra
king.

Although the solver is designed with fresh 
on
rete in mind, it is not limited to this.

It 
an be used with other high vis
ous materials whi
h behaves in a laminar manner (i.e.

in a non-turbulent manner). Example of this would be the �ow of aluminum parti
les

submerged in vis
ous oil. Also, other types of 
ement based materials 
an be analyzed,

like the �ow of sand parti
les submerged in 
ement paste (i.e. investigation of �ow and

segregation of mortar).
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Chapter 1

Introdu
tion

1.1 The Solver

A multiphase transient simulator, named vvpfFoam, has been developed that models the

dynami
s of multiple �uid phases during 
asting of vis
ous �uid like the fresh 
on
rete (i.e.

newly mixed 
on
rete). The development is realized within the OpenFOAM framework,

whi
h uses the �nite volume method (FVM). One of the aims with the solver is to simulate

operational problems related to un
ertainties in 
asting predi
tions of fresh 
on
rete. This

in
ludes the e�e
t of the settlement of aggregates by gravity (i.e. segregation) as well as

the e�e
t of shear (rate) indu
ed parti
le migration [2, 3, 4℄. Improved predi
tion a

ura
y

of transient multiphase �ow allows for the design of more 
omplex and durable 
on
rete

stru
tures and additionally allows ready-mix plants to investigate the e�e
t of stability

variation during 
asting of a large/di�
ult stru
ture.

The vvpfFoam en
ompasses two theories. The �rst one is the Computational Fluid

Dynami
s (CFD) of transient vis
oplasti
 �uid with open (free) boundary, thus dividing

the system between the atmospheri
 air and a mixture �uid (e.g. fresh 
on
rete). This

is what 
ould be 
onsidered as a standard Volume of Fluid approa
h (VOF) [5℄. This

subje
t is treated in Chapter 3 (Page 26). The se
ond theory is the implementation of

�eld equation for parti
le distribution into the numeri
al framework to be able to 
al
ulate

segregation/settling within the mixture �uid (e.g. segregation of fresh 
on
rete), in
luding

the shear (rate) indu
ed parti
le migration [2, 3, 4℄. The approa
h used in treating the

segregation is based on the Drift Flux Model (DFM

1

), whi
h is derived from the so-
alled

two-�uid model [6, 7℄. This subje
t is treated in Chapter 2, Page 16.

The solver 
an be 
ompiled on OpenFOAM 2.2.0 to 2.2.2 and is designed for high vis-


ous �uid only (i.e. laminar �ow) and thus turbulen
e is not in
luded. Although designed

with fresh 
on
rete in mind, it 
an be used with other high vis
ous materials as well, e.g.

aluminum parti
les submerged in vis
ous oil. As the atmospheri
 air has no real stress

related intera
tions with the mixture (e.g. with the fresh 
on
rete), the former is assumed

to behave in a non-turbulent manner as well (i.e. atmospheri
 laminar �ow). If turbulent

1

In some literature, the term �Drift Flux Method� is used, rather than �Drift Flux Model�.

1



1.2. Servi
e Life of the Con
rete Stru
ture
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analysis is required for the mixture (e.g. small 
ontaminant parti
les submerged in water),

the user must add it to the solver.

To reiterate, in the vvpfFoam solver, a standard VOF approa
h is mixed with the

DFM and the approa
h is des
ribed in Chapter 4, Page 31. The former 
al
ulates the

�ow of two �uids that do not generally intermix (immis
ible) and thus usually have a


lear boundary between them, e.g. 
on
rete and atmospheri
 air. For the se
ond part of

the solver, where the DFM is applied, the phases are generally in an intermixed (mis
ible)

state, e.g. 
oarse aggregates suspended in mortar. Three phases are involved in the solver,

of whi
h atmospheri
 air is the �rst phase (with a volume fra
tion α2). The mixture �uid

(volume fra
tion α1), whi
h 
ould for example represent fresh 
on
rete, is divided between

a matrix phase (also, 
ontinuous phase) and a parti
le phase (also, dispersed phase), whi
h


onstitute the se
ond and the third phase, respe
tively (with volume fra
tions αc and αd).

In addition to αc and αd, the solid 
on
entration

2

of the 
ontinuous and the dispersed

phases are also designated with βc = αc/α1 and βd = αd/α1, respe
tively (see Chapter 4).

1.2 Servi
e Life of the Con
rete Stru
ture

The load 
arrying 
apa
ity and servi
e life of 
on
rete stru
ture is very mu
h dependent

on the quality and su

ess of 
on
rete pla
ement into formwork at jobsite [8, 9, 10, 11℄.

In re
ent years numeri
al modeling of 
on
rete pla
ement has showed great potentials to

be
ome an important tool for optimization of su
h pro
ess [12℄. Only re
ently, resear
hers

from various part of the world have started to work on su
h 
asting predi
tion tools using

di�erent CFD softwares [8℄. But lot of work is still to be done to understand the large s
ale

behavior of the involved �ow pro
esses [8℄, espe
ially in terms of 
al
ulating the 
oarse

aggregate 
on
entration as a fun
tion of lo
ation and time [13℄. In parti
ular, variation

in aggregate distribution 
an in
rease the lo
al porosity and thus the permeability of


on
rete. This 
an also 
ause heterogeneous shrinkage and 
reep in a given 
on
rete

element. Moreover, high heterogeneity will in
rease the probability that this phenomenon

yields high internal stress gradients and thus 
ra
king with the redu
tion in load 
arrying


apa
ity of the 
on
rete stru
ture as a result [11℄.

The Self Compa
ting Con
rete (SCC) is a very �uid 
on
rete and thus was expe
ted

to be the answer to 
asting problems. However, experien
e has shown that even for su
h

type of material, there will always exist a formwork and steel bars 
on�guration in whi
h


asting problems may o

ur [8℄. Furthermore, these 
asting problems may not be fully

resolved unless one 
an 
al
ulate the aggregate 
on
entration as a fun
tion of time and

lo
ation and espe
ially its response to di�erent types of obsta
les.

2

The term �solid 
on
entration� is also designated as �phase volume� [2℄ and sometimes as �volume

fra
tion� or �solid fra
tion�. All these terms will be used inter
hangeably in this work.
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1.3 Casting of a Wall Se
tion � An Example

Several di�erent types of formwork geometries have been used for testing the vvpfFoam

solver. An example of su
h is shown in Fig. 1.1 and 
onsists of a wall se
tion. The


on
rete is being pumped into the formwork from the left side and the diameter of the

hose is about 20 cm. The in�ow rate is su
h that it takes about 80 se
onds to �ll the

formwork. The number of 
ells in the 
urrent 
ase is about 1.8 million and 
al
ulations

were performed on resour
es provided by the I
elandi
 High Performan
e Computing.

Figure 1.1: Geometry of the wall se
tion (with reinfor
ing steel) used in some of the

simulation tests in this work.

The length of the wall is 10m, height is 3.4m, thi
kness is 30 cm and the length of

the small side wall (i.e. the one pointing into the overall stru
ture) is 1.9m. In the front

(main) wall is a double layer steel reinfor
ement with 
over of 34mm, but in the side wall

is a single layer reinfor
ement lo
ated at the wall 
enter. The diameter of the rebar

3

is

12mm, while the size of the reinfor
ement mesh is 250× 250mm.
In Fig. 1.2 the 
on
rete is being pumped from the base of the formwork, i.e. in 34 cm

height from the ground (see the arrow). Another 
ase where the 
on
rete is pumped from

above is shown in Fig. 1.3, with a fall height of 2.1m. The latter approa
h is more seldom

used at jobsite, but is in
luded to put a 
ertain strain on the solver. In Figs. 1.2 and 1.3,

the 
ontinuous phase 
onsists of mortar/�ne 
on
rete (here, all materials below 11mm in

diameter), while the dispersed phase 
onsists of 
oarse aggregates (in this 
ase, the 11 -

16mm aggregates).

The 
olor bar shown in Figs. 1.2 and 1.3 applies to both illustrations (a) and (b) and

represents the value βd at the 
ell 
losest to the wall (i.e. wallBetaD). In a

ordan
e with

the previous text, the 
olorbar des
ribes the solid 
on
entration of 
oarse aggregates (here,

the 11 - 16mm aggregate phase). The dark red 
olor, namely βd = 0.3, represents high

ompa
tion (or 
on
entration) of 
oarse aggregates, while the dark blue 
olor, βd = 0,
represents area that is 
ompletely absent of 
oarse aggregates. At su
h lo
ation, only

mortar (i.e. �ne 
on
rete < 11mm) remains. In the light brown 
olor range, the solid


on
entration is 
lose to βd = 0.2, whi
h in this 
ase means homogeneous 
on
rete (this

3

Rebar is short for reinfor
ing bar, and also known as reinfor
ing steel, steel bars, reinfor
ement steel

or just reinfor
ement, among other designations.
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Figure 1.2: Solid 
on
entration of 
oarse aggregates (i.e. phase volume), during the pump-

ing of fresh 
on
rete into a formwork from the ground (see the arrow) at 20 s (a) and 40 s
(b) after start of pumping.

Figure 1.3: Solid 
on
entration of 
oarse aggregates (i.e. phase volume), during pumping

of fresh 
on
rete into a formwork from above, with a fall height of 2.1m (see the arrow).
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value depends on the mixture proportions), or rather an initial state of 
on
entration of


oarse aggregates. Finally, the blue 
olor above the 
on
rete represents the atmospheri


air, or α2.

The same type of 
on
rete is used in Figs. 1.2 and 1.3. It has a low apparent vis
osity

η1 and is highly prone to segregation as is 
learly visible with the red 
olor at the bottom

of ea
h formwork. That is, settlement by gravity (i.e. �segregation�) as well as by shear

(rate) indu
ed parti
le migration are allowed to o

ur simultaneously. These two pro
esses

are also allowed to a�e
t the apparent vis
osity η1 = η1(βd), whi
h again a�e
ts the �ow

and thus the two pre-mentioned settlement types. In
luding the large segregation that

is 
learly visible at the base in Figs. 1.2 and 1.3, reinfor
ement shadows are also present

near the rebars as a 
onsequen
e of the parti
ular 
on
rete type used.

1.4 Testing the VOF Part of the Solver

As mentioned in Se
tion 1.1, the vvpfFoam solver is a mixture of VOF and DFM. As

a part of the 
ode veri�
ation, the output of the 
urrent solver is 
ompared with the

out
ome of the standard interFoam solver. Initially, the latter was used as a template in

the beginning of the 
ode development of the former. As the interFoam is a VOF solver

only, the drift velo
ity Vdj (see Chapter 6) must be set equal to zero in the vvpfFoam

solver. Also, the apparent vis
osity η1 must be set to something that both solvers 
an

use.

Here, a standard Bingham model is applied, with plasti
 vis
osity of µ = 50Pa · s and
yield stress of τ0 = 10Pa. For the interFoam, the density is set as ρ1 = 2300 kg/m3

, while

for the vvpfFoam the mixture density is implemented as ρ1 = βdρd + βcρc = 2700 kg/m3 ·
0.2 + 2200 kg/m3 · 0.8 = 2300 kg/m3

(see Eq. (4.14), Page 34).

1.4.1 A �Cake Break� Problem

In this 
ase, a 
ertain type of �dam break� problem is tested. The geometry is shown in

Fig. 1.4, and 
onsists of quarter of a �
ake� about 45 cm in height and radius of 55 cm,
whi
h is released to �ow by its own weight within a large box (90 cm x 1.4m x 50 cm).

In front of the 
ake are 16 small pillar obsta
les about 12 cm in diameter, between whi
h

the material has to �ow.

With the test setup shown in Fig. 1.4, the vvpfFoam manages to reprodu
e the

interFoam results exa
tly. A demonstration of this is shown in Fig. 1.5b. More pre-


isely, this 
ase 
onsists of two simulation results 
ut in half with the ParaView visual

software. The vvpfFoam result is marked with �III�, while the interFoam result with

�IV�. If any di�eren
e exists between the two results, su
h would be 
learly visible where

the two results meet in the middle. To demonstrate this point, an example of su
h dif-

feren
e is produ
ed in Fig. 1.5a, with interFoam: The 
ase marked with �II� the same

result as marked �IV� in Fig. 1.5b, while the 
ase marked with �I� is an interFoam result

with 20% higher rheologi
al values. In the early 
ode development, su
h type of di�eren
e
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Figure 1.4: The geometry and mesh of the �
ake break� problem (with 317,684 
ells).

Figure 1.5: Simulation results with the setup in Fig. 1.4. To the left are two interFoam

results using di�erent rheologi
al values (I and II), while to the right is a 
omparison of

vvpfFoam (III) and interFoam (IV).
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emerged between vvpfFoam and interFoam, however in smaller degree than demonstrated

in Fig. 1.5a.

1.4.2 Complete Wall Se
tion

In this se
tion, the same formwork is used as in Fig. 1.1, however now without rebars.

The results are shown relative to the 
enter 
ross-se
tion of the front wall as demonstrated

in Fig. 1.6. The 
on
rete is being pumped into the formwork from one side, in whi
h the

drop height is 2.1m. As before, the in�ow rate is su
h that it takes about 80 se
onds to

�ll the formwork. Pla
ing the hose at this height is done to put a 
ertain strain on the

solver. The number of 
ells in the 
urrent 
ase is about 420,000.

Figure 1.6: Geometry of the wall se
tion used in the simulation tests.

Figs. 1.7a-f show the solid 
on
entration of the overall mixture α1 (i.e. of the fresh


on
rete). As before, the Bingham model is applied, with plasti
 vis
osity of 50 Pa · s and
yield stress of 10 Pa. Illustrations (a) (
) and (e) are results generated by interFoam and

refer to 20, 40 and 60 se
onds after start of pumping. Illustrations (b), (d) and (f) are

results of α1 at the same time points, generated by the vvpfFoam. As shown, the out
ome

of the two solvers are almost exa
tly the same.

As mentioned before, the 
on
rete is being pumped into the formwork with a drop

height about 2.1m. This makes the �owing system more �volatile�, espe
ially near and

around the hose. Any tiniest di�eren
e generated near the hose will evolve with the �ow

and thus grow into larger di�eren
es downstream.

When 
omparing the results in Figs. 1.7a-f, with 
arefully observation, one 
an see

small di�eren
es in results between the two solvers. However, it should be noted that

su
h di�eren
e is not observable when pla
ing the hose near the base of the formwork as

done in Fig. 1.2, nor was any di�eren
e observed for the 
ase in Se
tion 1.4.1.

Innovation Center I
eland

ICI Rheo
enter

Report No. NMI 20-01

Page 7



1.5. Testing the DFM Part of the Solver

IRF (RANNIS)

Grant No. 163382-05

Figure 1.7: Comparison of a standard VOF solver interFoam (illustrations (a), (
) and

(e)) with the vvpfFoam solver (illustrations (b), (d) and (f)).

1.5 Testing the DFM Part of the Solver

1.5.1 Settling by Gravity (Se
tion 6.3)

In this se
tion, the simulation setup is a verti
al settling tank shown in Fig. 1.8. Its total

height is 1m in z dire
tion and the width is 20 cm both in x and y dire
tions. In this 
ase,
there is no velo
ity drive, i.e. no in�ow, out�ow, motion by gravity and so forth, meaning

U = 0. As shown in Fig. 1.8a, the mixture height is 0.8m. The solid 
on
entration at

time t = 0 s is βd = 0.2 and the maximum possible pa
king in this 
ase is 0.4. The number

of 
ells used in Fig. 1.8 is 2,560,000.

The settling velo
ity Vs is 
al
ulated by Eq. (6.6) on Page 60, using µN = 7.67 Pa · s,
ρc = 2200 kg/m3

, ρd = 2700 kg/m3
and Da = 13mm, whi
h results in −6mm/s iz. By

Se
tion 6.1.4 (Page 60), this means a 
onstant drift velo
ity of Vdj = −6mm/s iz. The

implementation in gravitySegregation.H is as follows:


onst dimensionedS
alar 
onstVsGR

(

"
onstVsGR",

dimensionSet(0,0,1,0,0,0,0),

// s
alar(1.0194e-4) // *g = -1 mm/s

// s
alar(3.0581e-4) // *g = -3 mm/s

s
alar(6.1162e-4) // *g = -6 mm/s

);
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tmp<volVe
torField> VsGR = mag(alpha1)*
onstVsGR*g;

#ifdef GRAVITY_SEGREGATION

VdjGR =

slowDown2

(

alphaD, // alphaD, or betaD, depending on user preferen
e!

alphaDMIN,

alphaDMAX

)*(1.0*VsGR);

#else

VdjGR = zeroVelo
ity;

#endif

As the drift velo
ity Vdj is 
onstant, the out
ome of this experiment is not dependent

on mixture density ρ1 nor on the apparent vis
osity η1.

Figure 1.8: Solid 
on
entration of the dispersed phase βd at 0 s (a), 33.3 s (b), 35.0 s (
),
66.7 s (d), 70.0 s (e) and 72.0 s (f), respe
tively (with R = 0, 
.f. Se
tion 4.9).

In Fig. 1.8a, the initial 
ondition βd = 0.2 is shown, valid at time t = 0 s, while in
subsequent �gures (b), (
), (d), (e) and (f), are the simulation results for βd at time 33.3,

35.0, 66.7, 70.0, and 72.0 s, respe
tively. The result in Fig. 1.8f applies also at 170 s, whi
h
is the end of simulation (i.e. the result at time t = 72.0 s is the same as at time 170 s).

Assuming that the observed settling of Vs = −6mm/s iz is equal to the drift velo
ity
Vdj during the whole simulation (see Se
tion 6.1.4 on Page 60) and with mixture 
olumn

of L = 0.8m, the time it should take for the suspended parti
le to settle should be about

∆t = (L/2)/ |Vs| = (0.4m)/(6mm/s) = 66.7 s. But as shown in Fig. 1.8e, with Vdj =
−6mm/s iz, this 
ondition does not o

ur until at 70 s, meaning a 5% time di�eren
e.
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At the time of writing, it is un
lear if this di�eren
e is due to an issue with the 
ode or

simply a natural di�eren
e between the drift velo
ity Vdj and the observed settling Vs

(see Eq. (6.4)), or due to a theoreti
al solver di�
ulty in 
al
ulating stati
 
ases, i.e. a


ase with U = 0.

1.5.2 Settling by Shear Indu
ed Parti
le Migration (Se
tion 6.4)

To 
he
k the solver relative to settling by shear (rate) indu
ed parti
le migration, the

numeri
al experiment done by Fang and Phan-Thien [14℄ is reprodu
ed. The theory

applied is in a

ordan
e with Se
tion 6.4, Page 63, using the apparent vis
osity of Krieger

and Dougherty

4

, η1 = µ(αd), where µ(αd) is given by Eq. (5.12), Page 54. Here, µ(0)
is set equal to 1 Pa · s. The apparent vis
osity is implemented in apparentVis
osity.H

(through return vis
ous_6()), reprodu
ed with the following 
ode (αd = ϕ = varPhi,


.f. the last paragraph in Se
tion 5.1):

tmp<volS
alarField> vis
ous_6

(

mag(alpha1)*

(

mu*pow(mag(s
alar(1) - varPhi/s
alar(0.68)),s
alar(-1.82))

)

+ mag(s
alar(1) - alpha1)*eta2

);

In [14℄, a 
oaxial 
ylinders rheometer is used, with a rotating inner 
ylinder. The

dimensionless 
riteria 
onsists of Ri/Ro = 0.25, where the term Ri represents the radius

of the inner 
ylinder and Ro radius of the outer 
ylinder. To a

ommodate this 
riteria,

the inner 
ylinder is set as Ri = 8.0375mm, while the outer 
ylinder as Ro = 32.1500mm.
The total height of the rheometer is set as h = 56.2625mm. The overall geometry of the

rheometer is shown in Fig. 1.9.

Figure 1.9: The overall geometry of the rheometer used in the 
urrent test.

4

The di�eren
e between α1, αd and ϕ will not be 
ompletely 
lear until reading the whole report.

Thus for the 
urrent text, assume αd = βd = ϕ.
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The test material 
onsists of small inert neutrally buoyant parti
les with almost mono-

sized parti
le size distribution, with diameter of Da = 1350µm [14℄ (radius a = Da/2).
The 
orresponding dimensional number isDa/Ro = 0.042. The maximum pa
king fra
tion

is ϕm = 0.68 while the intrinsi
 vis
osity is set as [η] = 1.82 [14℄ (see also Eq. (5.12) about
ϕm and [η]). The density of the suspended parti
le is equal ρd = 1188 kg/m3

and with

a neutrally buoyant suspension, then ρc = ρd = ρ1. The solid 
on
entration is initially

uniformly distributed at αd = 0.5. The inner 
ylinder is set to rotate at time t = 0 s with
the angular velo
ity of ω = 1 rad/s. Although the theory of Se
tion 6.4 is being used, the

equation used in this test is not Eq. (6.8) (Page 63), but as always, Eq. (4.20) (Page 35).

5
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Figure 1.10: Dimensionless vis
osity η1/µ(0) = µ(αd)/µ(0) (a) and solid 
on
entration αd

(b) as a fun
tion of dimensionless radius r/Ro, on 
ompletion of di�erent inner 
ylinder

revolutions (at the height z = 2.5 cm).

Fig. 1.10a shows a plot of the dimensionless vis
osity η1/µ(0) = µ(αd)/µ(0) as a

fun
tion of dimensionless radius r/Ro at the height of z = 2.5 cm. Likewise, Fig. 1.10b

shows the plot of the solid 
on
entration αd as a fun
tion of r/Ro at the same height. The

legend in the latter applies for both illustrations and shows the 
orresponding number of

turns. More pre
isely, the �rst plot applies after 20 revolutions of the inner 
ylinder, while

the last plot after 200 revolutions. The results shown in Fig. 1.10b are an exa
t mat
h of

the simulation results given by Fig. 4 in [14℄.

It should be noted that although the number of 
ells in this 
ase is only about 230,000,

the 
al
ulation took about 10 days using one 
omputer node (24 
ores). This is a rather

long 
al
ulation time and is probably due to instability, whi
h 
ould be attributed to how

the term ∇η1/η1 is 
urrently evaluated in the solver, i.e. when 
al
ulating Eq. (6.14) on

Page 64. At the time of writing, there was not su�
ient time to investigate this further,

but the user might have to 
hange how the term ∇η1/η1 is 
al
ulated.
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1.6 Conservation of Material Volume

For the 
ase in Fig. 1.8, the total amount of mixture is 0.2m · 0.2m · 0.8m = 32 l and
the amount of dispersed phase βd is 32 l · 0.2 = 6.4 l. In Fig. 1.11 are shown the volume


onservation for α1 and αd, for this 
ase. The mixture 
on
entration α1 is solved by

Eq. (4.23), Page 36, while the 
on
entration for the dispersed phase αd is solved by

Eq. (4.20), Page 35. As shown, 
hange in either α1 or αd is basi
ally nonexistent. Also

shown in Fig. 1.11 is the volume 
hange in βd, but as demonstrated with Eq. (4.8), Page 33,

this term is 
al
ulated and not solved. Moreover, as dis
ussed in Se
tion 4.7, there 
an be

abnormal 
hanges in this value, espe
ially at the interfa
e between air and mixture that

is mostly of little importan
e. The point is, that the 
hanges in βd shown in the right

illustration of Fig. 1.8 is mu
h less important relative to the 
hanges in αd.
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Figure 1.11: Volume 
onservation for α1 (left) and αd (right), for the 
ase in Fig. 1.8.

For the above 
ase, the mixture velo
ity is zero U = 0. To examine the 
onservation

of α1 and αd for a moving mixture, the 
ake break problem shown in Se
tion 1.4.1 is

examined (see Figs. 1.4 and 1.5). Here, a 
onstant drift velo
ity of Vdj = −3mm/s iz is
applied and the 
orresponding settling is shown in Fig. 1.12.

In Fig. 1.13 are shown the volume 
onservation for α1 and αd, for the 
ase of Fig. 1.12.

Here, the 
onservation is slightly less than applies for the 
ase of Fig. 1.8, or 0.25% for α1

and 0.47% for αd for the whole simulation time.

The 
al
ulation of 
ompressibility for this 
ase (by Eqs. (4.66) and (4.67)) is shown in

Fig. 4.4, Page 48, in 
onne
tion with dis
ussion of the so-
alled pressure equation.

1.7 Known Issues

1. For 
losed system, the volume of αd is not ne
essarily 100% 
onserved, 
.f. Fig. 1.13.

This has to do with the term �(αdρc/ρ1)Vdj� in Eq. (4.20), Page 35, whi
h 
an behave

as a sour
e term.
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Figure 1.12: Solid 
on
entration of the dispersed phase βd at 0 s (a), 3 s (b), 10 s (
) and
30 s (d), respe
tively (with R = 0, 
.f. Se
tion 4.9).
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Figure 1.13: Volume 
onservation for α1 (left) and αd (right), for the 
ase in Fig. 1.12.
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2. For 
losed system, the volume of α1 is in some 
ases not 100% 
onserved, 
.f.

Fig. 1.13. In su
h 
ases, putting the drift velo
ity Vdj equal to zero results in a

better volume 
onservation. Although the drift velo
ity Vdj is not dire
tly present

in Eq. (4.23), Page 36, it will a�e
t this equation through the 
hanges in ρ1 (see

Eq. (4.14)), whi
h might bring about an arti�
ial sour
e. Setting ρ1 = 1 in Eq. (4.23)
with Vdj 6= 0, results in better 
onservation. This 
an be done by 
ommenting the

line #define ALPHA1RHO_SOLVE in the sour
e �le ma
roDefinitions.H and re
om-

pile the solver.

3. During a pure verti
al settlement (see the 
ase in Se
tion 1.5), the �rst three bottom


ells are simultaneously �lled with αd when using MULES::impli
itSolve

5

. After

that, subsequent 
ells are �lled one by one, as expe
ted. To resolve (or pat
h) this

unfortunate behavor, the �rst row of 
ells must be divided into three for a given


ase, as shown in the right illustration of Fig. 1.14. These three 
ells then behave

as one, relative to αd.

4. A 
ustom version of the settlingFoam was 
reated to make 
omparison with the

vvpfFoam. The 
ustomization generally 
onsisted of implementing the same drift

velo
ity and apparent vis
osity as used in the vvpfFoam solver, as well as disabling

turbulen
e in the former. The 
ase setup was the same in both 
ases, to the extent

possible. Unfortunately, after the modi�
ations, the settlingFoam solver always


rashed when starting the �lling of α into the se
ond row of 
ells (see Fig. 1.14a).

Up to that point, both solvers behaved alike (however, only when the �rst row of


ells are split into three rows for vvpfFoam as dis
ussed in item 3 above). Thus, to

date, there is no 
omplete 
omparison with the settlingFoam solver.

Figure 1.14: Comparison of results by settlingFoam (a) with vvpfFoam (b).

Most 
ertainly, as with all sour
e 
odes, there are other unknown issues beyond what

is mentioned here. Sin
e this solver is open and li
ensed under the GNU General Publi


Li
ense (as applies with OpenFOAM), the user has the opportunity to repair 
urrent and

future issues. The user 
an modify the 
ode, add new 
apabilities and otherwise enhan
e

it to the spe
i�
ation needed. However, before 
ommitting to su
h a task, it is impor-

tant to read and understand this do
ument. Mixing VOF with DFM is not straightfor-

ward. This solver should not be 
onfused with 
apability of other existing solvers within

5

The �rst four bottom 
ells are simultaneously �lled with αd when using MULES::expli
itSolve.
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the OpenFOAM framework, like the multiphaseInterFoam, interMixingFoam or the

twoPhaseEulerFoam. The 
urrent solver deals with the treatment of immis
ible �uids

(i.e. �uids that do not intermix), in 
ombination with the treatment of mis
ible �uids (i.e.

�uid that do intermix). In addition to the intermixture of phases, the solver has 
apability

to allow for slip between phases, whi
h is an important aspe
t to allow for segregation

by gravitational settling and/or by other means, like by the shear (rate) indu
ed parti
le

migration.
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Chapter 2

Drift Flux Model � DFM

2.1 Introdu
tion

The Volume of Fluid Method (VOF) will be treated in Chapter 3. This parti
ular method


al
ulates the �ow of two �uids that do not generally intermix (immis
ible) and thus

usually have a 
lear boundary between them, e.g. fresh 
on
rete and atmospheri
 air.

However, for the 
urrent topi
, namely the Drift Flux Model (DFM), the phases are

generally in an intermixed (mis
ible) state, e.g. 
oarse aggregates suspended in mortar.

Although there exist various do
uments and reports about the DFM, these are often

fragmented with missing in-between mathemati
al derivations and less relevant to the


urrent topi
. Be
ause of this, a whole 
hapter is dedi
ated to the subje
t in this report.

2.2 Two-Fluid Method

The starting point for the formulation of the Drift Flux Model (DFM) in Se
tion 2.3,

is the Multi-Fluid Method, using two phases. With only two phases involved, the latter

method is also known as the Two-Fluid Method. The Multi-Fluid Method solves mass

and momentum equations for ea
h phase. The basi
 equations of the Two-Fluid Method

are shown in Se
tions 2.2.2 and 2.2.3, and follows the representation that has previously

been given in [15, 16℄.

2.2.1 Fundamental Relations

The primary variable in the Multi-Fluid Method is the volume fra
tion

6

of phase k, whi
h
is represented with the term

7 βk and de�ned in Eq. (2.1). In this equation, the variable

Vm designates the (lo
al) volume of the mixture, i.e. volume of all phases 
ombined, while

6

To reiterate Footnote 2, the term �volume fra
tion� is also designated as �phase volume� and sometimes

as �solid 
on
entration� [2℄. All these terms will be used inter
hangeably in this work.

7

Commonly, the volume fra
tion of phase k is rather designated with the term αk (instead of βk), but

be
ause of the 
omplexity of the 
urrent work, the term α needs to be reserved for later usage.

16
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the term Vk represents the volume of phase k within this mixture volume (i.e. Vk ≤ Vm).

More spe
i�
ally, the following always applies

βk =
Vk

Vm
∧ Vm =

n
∑

k=1

Vk ⇒
n
∑

k=1

βk = 1 (2.1)

As shown above, summarizing the volume of all phases, namely Vk, gives the mixture

volume Vm. From this, by summarizing the volume fra
tion βk of ea
h phase k results in

the value 1.

In this work, the mixture volume Vm is also represented with the term V1 and the

reason for doing this will be 
lear in Se
tion 4.2 (i.e. Vm ≡ V1).

The density of phase k is represented with ρk, while mk is its mass, meaning ρk =
mk/Vk. From this, the following relations are obtained

βkρk =
Vkρk
Vm

=
mk

Vm
(2.2)

The mixture density is represented with ρm, while mm =
∑

mk is its mass. The relation-

ship between density, volume and mass for the mixture is ρm = mm/Vm. From this, the

following relations are obtained

ρm =
mm

Vm
=

∑n
k=1mk

Vm
=

n
∑

k=1

mk

Vm
=

n
∑

k=1

βkρk (2.3)

The last part in the above equation was obtained with help from Eq. (2.2). In this

work, the mixture density ρm and mass mm are also represented with the terms ρ1 and

m1, respe
tively. The reason for doing this will be 
lear in Se
tion 4.2 (i.e. ρm ≡ ρ1 ∧
mm ≡ m1).

2.2.2 Mass Conservation of Ea
h Phase k

The mass 
onservation of ea
h phase k (i.e. equation for the volume fra
tion of phase k)
is given by [15℄ (see also [16℄)

∂βkρk
∂t

+∇ · (βkρkVk) = Γk (2.4)

The term Γk is the rate of mass generation of phase k andVk is the 
enter of mass velo
ity

of phase k. That is, if the phase k is 
omposed of N parti
les

8

, ea
h of mass mk,i, and

velo
ity of Vk,i, the velo
ity of phase k is given by (see [3℄, Se
tion 2.2)

Vk =

∑N
i=1mk,iVk,i
∑N

i=1mk,i

∧ mk =

N
∑

i=1

mk,i (2.5)

8

That is, parti
les, mole
ules or whatever that is relevant for the physi
al system to be investigated.
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It should be 
lear that Eq. (2.5) is never expli
itly used in the 
urrent do
ument and

serves only as a philosophi
al foundation

9

.

The term Vm represents the 
enter of mass velo
ity of the mixture (also, �mixture

velo
ity�) and is de�ned in the same manner as above, by (here, assuming that the mixture


onsists of n phases)

Vm =

∑n
k=1mkVk
∑n

k=1mk
∧ mm =

n
∑

k=1

mk (2.6)

Continuing further with the above equation, the following is obtained

Vm =

∑n
k=1 (mk/Vm)Vk
∑n

k=1mk/Vm
=

∑n
k=1 βkρkVk
∑n

k=1 βkρk
=

∑n
k=1 βkρkVk

ρm
(2.7)

In the last part of the above equation, Eq. (2.3) was used.

In this work, the mixture velo
ity Vm is also represented with U1 and the reason for

doing this will be 
lear in Se
tion 4.2 (i.e. Vm ≡ U1).

By summing the mass 
onservation Eq. (2.4) over all phases k, the following is obtained

∂

∂t

n
∑

k=1

(βkρk) +∇ ·
n
∑

k=1

(βkρkVk) =

n
∑

k=1

Γk (2.8)

Be
ause the total mass is 
onserved, the right hand side of Eq. (2.8) must vanish [15℄.

By using Eqs. (2.3) and (2.7) in Eq. (2.8), the 
ontinuity equation for the mixture 
an be

derived and is given by Eq. (2.9).

∂ρm
∂t

+∇ · (ρmVm) = 0 (2.9)

2.2.3 Conservation of Momentum for Ea
h Phase k

For the Multi-Fluid Method, the momentum equation for ea
h phase k, is given by [6, 7,

15, 16℄

∂

∂t
(βkρkVk) +∇ · (βkρkVkVk) = ∇ · (βkσk) + βkρkg +Mk (2.10)

The term g is the gravity, while βk, ρk and Vk have already been de�ned in the previous

se
tions. The term σk is the stress tensor for phase k. For many �uids, this 
onstitutive

equation is represented as [2℄,

σk = −pk I+Tk (2.11)

9

As demonstrated in [3℄ (Se
tion 2.2), in order to re
onstru
t the Cau
hy equation of motion, the �uid

velo
ity must be de�ned in this manner. This re
onstru
tion is based on parti
le�parti
le intera
tions

between parti
les that make up the 
ontinuum parti
le [3℄. Being a �
hild� of the Cau
hy equation, the

same applies for the Navier�Stokes equations.
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where the se
ond order tensor Tk is known as the extra stress tensor, I is the unit dyadi
,

and pk is the pressure (the pressure of ea
h phase will be slightly dis
ussed in Se
tion 2.3.4).
Sin
e the subje
t of the 
urrent work is a high vis
ous �uid with low Reynolds numbers,

the term Tk does not 
ontain any turbulent 
omponents.

In Eq. (2.10), the term Mk is the average interfa
ial momentum sour
e for phase k.
That is, it represents transfer of momentum from one phase to the the next, like drag,

lift, surfa
e tension and so forth [7, 15, 16℄. Its determination represents the largest

un
ertainties in the results of Multi-Fluid Method [16℄.

2.3 Drift Flux Model - DFM

As previously mentioned, the Drift Flux Model is based on the Multi-Fluid Method,

using two phases, then also known as the Two-Fluid Method. As su
h, many of the above

equations will be reused in the following se
tions.

2.3.1 Fundamental Relations

As in the Two-Fluid Method, the Drift Flux Model (DFM) assumes that the �uid mixture


onsists of two phases. It is assumed that the two �uids 
an intermix as well as separate,

depending on the �ow 
onditions involved. The latter phenomenon is also known as phase

separations, slip between phases, settling, segregation, and so forth, depending on the �eld

of s
ien
e in whi
h the DFM is applied (i.e. waste water treatment, sewage treatment,

�ow of fresh 
on
rete, et
.).

Here, the �uid mixture is a suspension that 
onsists of a 
ontinuous phase (i.e. a

matrix) and a dispersed phase (i.e. suspended parti
les). The 
ontinuous phase will have

the symbol 
, while the dispersed phase has the symbol d. Thus, the numbering of phases

is in terms

10

of k = c, d. With this �numbering s
heme�, the following is obtained from

Eq. (2.1)

βc =
Vc

Vm
∧ βd =

Vd

Vm
∧ Vm = Vc + Vd ⇒ βc + βd = 1 (2.12)

The mixture density is given by Eq. (2.3) and with two phases it is 
al
ulated as

ρm = βcρc + βdρd (2.13)

Likewise, the 
al
ulation of mixture velo
ity is shown in Eq. (2.7) and with two phases

it is given by

Vm =
βcρcVc + βdρdVd

ρm
(2.14)

10

Often, the numbering of phases is in terms of numbers like k = 1, 2, but be
ause of the 
omplexity

of the 
urrent work (see Chapter 4), su
h labeling s
heme needs to be reserved for later usage.
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The relative velo
ity

11

between the two phases is de�ned by [7℄

Vr = Vc −Vd (2.15)

The di�usion velo
ity is de�ned by the following equation [7℄

Vkm = Vk −Vm ∀ k = c, d. (2.16)

The term Vk is the 
enter of mass velo
ity of phase k (see Eq. (2.5)). From Eq. (2.16),

the di�usion velo
ity of ea
h phase, namely c (the 
ontinuous phase) and d (the dispersed
phase), are given by the following

Vcm = Vc −Vm (2.17)

Vdm = Vd −Vm (2.18)

Below are derivations of some important relationships that are used later. These are

obtained from previous derivations and de�nitions.

The �rst relationship is as follows

βcρcVcm + βdρdVdm = 0 (2.19)

The proof of this is given by Eq. (2.20) shown below.

βcρcVcm + βdρdVdm = βcρc(Vc −Vm) + βdρd(Vd −Vm) =
βcρcVc − βcρcVm + βdρdVd − βdρdVm =
βcρcVc + βdρdVd − (βcρc + βdρd)Vm = βcρcVc + βdρdVd − ρmVm =
ρmVm − ρmVm = 0

(2.20)

In the above equation, Eqs. (2.17) and (2.18) were used, while in its third line, Eq. (2.3)

was used. Finally, in its fourth line, Eq. (2.7) was used.

The se
ond relationship is obtained from Eq. (2.17), with the 
on
omitant use of

Eqs. (2.3) and (2.7):

Vcm = Vc −Vm = Vc −
βcρcVc + βdρdVd

βcρc + βdρd

=
βcρcVc + βdρdVc − βcρcVc − βdρdVd

βcρc + βdρd

=
βdρdVc − βdρdVd

ρm
=

βdρd
ρm

(Vc −Vd) =
βdρd
ρm

Vr

(2.21)

In the last line of Eq. (2.21), the relative velo
ity a

ording to Eq. (2.15) was used. By

rearranging terms in Eq. (2.19), the third relationship is obtained:

Vdm = − βcρc
βdρd

Vcm = −βcρc
ρm

(Vc −Vd) = −βcρc
ρm

Vr (2.22)

11

In some literature, the relative velo
ity is de�ned as Vr = Vd − Vc instead of Vr = Vc − Vd.

Irrespe
tive of whi
h is used, the di�eren
e is not 
onsequential be
ause other terms will just 
hange

a

ordingly and the physi
s of the Drift Flux Model will remain un
hanged.
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In the above, Eqs. (2.15) and (2.21) were used.

The the volumetri
 �uxes of ea
h phase is de�ned as (see for example [7℄)

jk = βkVk (2.23)

Hen
e the total volumetri
 �ux is given by the following

j =
n
∑

k=1

βkVk = βcVc + βdVd (2.24)

The drift velo
ity Vkj is the velo
ity of phase k relative to that of the volume 
enter of

the mixture and is given by the following [17℄ (see also [7, 15℄)

Vkj = Vk − j (2.25)

By using the above equation, the fourth relationship 
an be derived for phase c (as pre-
viously mentioned, phase c is the 
ontinuous phase, i.e. the matrix part of the overall

mixture):

Vcj = Vc − j = Vc − βcVc − βdVd = (1− βc)Vc − βdVd

= βdVc − βdVd = βdVr

(2.26)

By using Eq. (2.25), the �fth relationship 
an be derived for phase d (as previously men-

tioned, phase d is the dispersed phase, i.e. the suspended parti
les):

Vdj = Vd − j = Vd − βcVc − βdVd = (1− βd)Vd − βcVc

= βcVd − βcVc = −βcVr

(2.27)

The above is the drift velo
ity of the dispersed phase. That is, the term Vdj represents

the velo
ity of the dispersed phase relative to that of the volume 
enter of the mixture

(see Eq. (2.25)).

The sixth relationship is as follows

βcVcj + βdVdj = 0 (2.28)

The proof of this relationship is given by Eq. (2.29), shown below:

βcVcj + βdVdj = βc(Vc − j) + βd(Vd − j) =
βcVc + βdVd − βcj− βdj = j− (βc + βd)j = j− j = 0

(2.29)

Rearrangement of Eq. (2.28) gives

Vdj = −βc

βd
Vcj (2.30)

From Eq. (2.22), the seventh relationship is obtained:

Vdm = −βcρc
ρm

Vr = −βcρc
ρm

(

−Vdj

βc

)

=
ρc
ρm

Vdj (2.31)
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In the above, the relation from Eq. (2.27) was used. Continuing further with Eq. (2.31),

the following 
an be obtained

Vdm =
ρc
ρm

Vdj =
ρc
ρm

(

−βc

βd
Vcj

)

= −βc

βd

ρc
ρm

Vcj (2.32)

In the above, the relation from Eq. (2.30) was used.

2.3.2 Mass Conservation of the Dispersed Phase

Using the mass 
onservation equation for the Two-Fluid Method Eq. (2.4), one 
an obtain

the mass 
onservation for both the 
ontinuous phase and the dispersed phase, namely with

∂βcρc
∂t

+∇ · (βcρcVc) = Γc, (2.33)

∂βdρd
∂t

+∇ · (βdρdVd) = Γd (2.34)

In this work, no mass formation or destru
tion is o

urring (i.e. no phase 
hanges), mean-

ing Γc = Γd = 0 (see also [15℄ about a general assumption of this).

If the densities of the two phases are 
onstant, i.e. ρc = constant and ρd = constant,
one 
an simplify the above equations further

∂βc

∂t
+∇ · (βcVc) = 0 (2.35)

∂βd

∂t
+∇ · (βdVd) = 0 (2.36)

By adding Eqs. (2.35) and (2.36) and keeping in mind that βc + βd = 1 = constant (see
Eq. (2.12)), one obtains the following

∂(βc + βd)

∂t
+∇ · (βcVc + βdVd) = 0 +∇ · (βcVc + βdVd) = 0 (2.37)

By 
omparing the above result with Eq. (2.24), it be
omes 
lear that the divergen
e of

the total volumetri
 �ux j is zero:

∇ · j = 0 (2.38)

It should be kept in mind that the above result is hinged on the above-mentioned 
on-

straints: ρc = constant and ρd = constant, whi
h are valid for the 
urrent work (see

Eq. (4.11), Page 33).

From the di�usion velo
ity for the dispersed phase Vdm, namely Eq. (2.18), with the


on
omitant use of Eq. (2.31), the following is obtained

Vd = Vdm +Vm =
ρc
ρm

Vdj +Vm (2.39)
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Using the above in Eq. (2.34) gives

∂βdρd
∂t

+∇ ·
(

βdρd

[

ρc
ρm

Vdj +Vm

])

= 0 (2.40)

Likewise, using Eq. (2.39) in Eq. (2.36) results in

∂βd

∂t
+∇ · (βdVm) +∇ ·

(

βdρc
ρm

Vdj

)

= 0 (2.41)

2.3.3 Divergen
e of Velo
ity

From Eqs (2.14) and (2.24), the di�eren
e between the mixture velo
ity and total volu-

metri
 �ux is as follows

Vm − j =
βcρcVc + βdρdVd

ρm
− βcVc + βdVd (2.42)

The above 
an be evaluated further as shown with Eq. (2.43).

(Vm − j) ρm = βcρcVc + βdρdVd − βcρmVc − βdρmVd

= βcVc(ρc − ρm) + βdVd(ρd − ρm)
= βcVc(ρc − βcρc − βdρd) + βdVd(ρd − βcρc − βdρd)
= βcVc [ρc(1− βc)− βdρd] + βdVd [ρd(1− βd)− βcρc]
= βcVc [ρcβd − βdρd] + βdVd [ρdβc − βcρc]
= βcVcβd (ρc − ρd) + βdVdβc (ρd − ρc)
= βcVcβd (ρc − ρd)− βdVdβc (ρc − ρd)
= βcβd (ρc − ρd) (Vc −Vd)

(2.43)

In the third line, Eq. (2.13) was used (i.e. ρm = βcρc + βdρd), while in the �fth line,

Eq. (2.12) was used (i.e. βc + βd = 1). Using Eqs. (2.15) and (2.27), the above 
an be

further re�ned:

(Vm − j) ρm = βcβd (ρc − ρd)Vr = −βcβd (ρc − ρd)
Vdj

βc

= βd (ρd − ρc)Vdj (2.44)

Finally, rearranging the above, gives

Vm = j+ βd

(

ρd − ρc
ρm

)

Vdj (2.45)

Taking the divergen
e of Eq. (2.45) and keeping in mind the result of Eq. (2.38), namely

that ∇ · j = 0, the following is obtained

∇ ·Vm = ∇ ·
(

βd

[

ρd − ρc
ρm

]

Vdj

)

(2.46)

The above 
an also be expressed with the following

∇ ·Vm = ∇ ·R (2.47)

where the ve
tor R is de�ned with

R =

(

βd

[

ρd − ρc
ρm

]

Vdj

)

(2.48)
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2.3.4 Mixture Momentum Equation

From Eq. (2.10), the mixture momentum equation for ea
h phase k = c, d is given by

∂

∂t
(βcρcVc) +∇ · (βcρcVcVc) = ∇ · (βcσc) + βcρcg +Mc (2.49)

∂

∂t
(βdρdVd) +∇ · (βdρdVdVd) = ∇ · (βdσd) + βdρdg +Md (2.50)

The mixture momentum equation for the DFM is obtained by the summation of ea
h

part of Eqs. (2.49) and (2.50). Summarizing the �rst part and using Eq. (2.7) (Page 18)

gives

∂

∂t
(βcρcVc) +

∂

∂t
(βdρdVd) =

∂

∂t
(ρmVm) (2.51)

For the stress 
omponents, the following 
an be obtained by use of Eq. (2.11)

βc σc + βd σd = −(βc pc + βd pd) I+ (βc Tc + βd Td) = −pm I+Tm (2.52)

. . .meaning. . .

∇ · (βc σc) +∇ · (βd σd) = ∇ · (−pm I+Tm) = −∇pm +∇ ·Tm (2.53)

As shown in Eq. (2.52), the mixture pressure is given by pm = βcpc + βdpd (see [7℄). Also
shown there, the mixture extra stress tensor is given by Tm = βc Tc + βd Td (see [15℄).

In pra
ti
e, the phase pressures are often taken to be equal, i.e. pc = pd, meaning
pm = βcpc + βdpd = (βc + βd) pc = pc = pd. This assumption is 
onsidered to be valid

ex
ept in the 
ase of expanding bubbles [18℄ (see also [15℄).

From Eq. (2.3) on Page 17, the following is obtained

βcρcg + βdρdg = ρmg (2.54)

By the summation of Eqs. (2.49) and (2.50) and thereafter using the results of Eqs. (2.51)

to (2.56) with Mc +Md = Mm, one 
an obtain the mixture momentum equation, given

by

∂

∂t
(ρmVm) +∇ · (βcρcVcVc + βdρdVdVd) = −∇pm +∇ ·Tm + ρmg +Mm (2.55)

In Eqs. (2.49) and (2.50), the termsMc andMd represents transfer of momentum from

one phase to the the other by phenomena su
h as drag, lift or surfa
e tension e�e
ts [7℄.

By Newton's third law of motion (a
tion and rea
tion), these e�e
ts are always opposite

and equal, meaning Mc = −Md. Thus, the overall e�e
t Mm = Mc + Md is always

summarized to zero and is therefore not of 
on
ern, something that is not possible for the

Two-Fluid Method (see Eq. (2.10)). That is, the following applies [19℄.

Mc +Md = Mm = 0 (2.56)
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In order to make Eq. (2.55) usable, the sum βcρcVcVc+βdρdVdVd has to be 
al
ulated

further. By applying the di�usion velo
ity of the phases, namely Eqs. (2.17) and (2.18),

one obtains Vc = Vm + Vcm and Vd = Vm + Vdm. By using these two relationships,

in
luding Eqs. (2.3) and (2.19), the following is obtained

12

:

βcρcVcVc + βdρdVdVd = βcρc(Vm +Vcm)(Vm +Vcm)+
βdρd(Vm +Vdm)(Vm +Vdm) =
βcρc(VmVm +VmVcm +VcmVm +VcmVcm)+
βdρd(VmVm +VmVdm +VdmVm +VdmVdm) =
(βcρc + βdρd)VmVm +Vm(βcρcVcm + βdρdVdm) + (βcρcVcm + βdρdVdm)Vm+
βcρcVcmVcm + βdρdVdmVdm =
ρmVmVm +Vm · 0 + 0 ·Vm + βcρcVcmVcm + βdρdVdmVdm =
ρmVmVm +

∑n
k=1 βkρkVkmVkm

(2.57)

By rearranging terms in Eq. (2.19), Page 20, and thereafter using Eq. (2.31), Page 21,

the following is obtained

Vcm = −βdρd
βcρc

Vdm = −βdρd
βcρc

(

ρc
ρm

Vdj

)

= −βdρd
βcρm

Vdj (2.58)

By using Eqs. (2.31) and (2.58), the last part of Eq. (2.57) 
an be extrapolated further,

whi
h is done in Eq. (2.59).

βcρcVcmVcm + βdρdVdmVdm = βcρc

(

βdρd
βcρm

)2

VdjVdj + βdρd

(

ρc
ρm

)2

VdjVdj =
[

βcρc

(

βdρd
βcρm

)2

+ βdρd

(

ρc
ρm

)2
]

VdjVdj =
[

βcρcβ
2
d
ρ2
d

β2
cρ

2
m

+ βdρdρ
2
c

ρ2m

]

VdjVdj =
[

ρcβ
2
d
ρ2
d

βcρ2m
+ βdρdρ

2
c

ρ2m

]

VdjVdj =
βdρcρd
ρ2m

(

βdρd
βc

+ βcρc
βc

)

VdjVdj =

βdρcρd
ρ2m

(

βcρc+βdρd
βc

)

VdjVdj =
(

βdρcρd
ρ2m

ρm
1−βd

)

VdjVdj =
(

βd

1−βd

ρcρd
ρm

)

VdjVdj

(2.59)

In the above, the relationships by Eqs. (2.1) and (2.3) were also used.

By putting the results of Eqs. (2.56), (2.57) and (2.59) into Eq. (2.55), the �nal form

for the mixture momentum equation for the DFM is obtained

∂(ρmVm)

∂t
+∇·(ρmVmVm)+∇·

([

βd

1− βd

ρcρd
ρm

]

VdjVdj

)

= −∇pm+∇·Tm+ρmg (2.60)

12

Note that the tensor produ
t ⊗ is not used in this report. Rather, the same presentation method is

used as given by Mase [20℄ and Malvern [21℄. For example, in order to demonstrate the non-
ommutative

behavior of a tensor produ
t (or outer produ
t) of two ve
tors, it would be shown as VmVcm 6= VcmVm

and not as Vm ⊗Vcm 6= Vcm ⊗Vm.
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Chapter 3

Volume of Fluid Method � VOF

3.1 Introdu
tion

For the 
urrent work, it is important to divide the system between the atmospheri
 air

and the �uid mixture (e.g. fresh 
on
rete). This is done with a so�
alled free interfa
e.

Numeri
al methods that 
an manage su
h division are 
lassi�ed into two groups depending

on the fundamental type of mesh used [22℄. These are moving mesh (Lagrangian mesh)

and �xed mesh (Eulerian mesh). Although the moving mesh approa
h allows a sharp

interfa
e de�nition it en
ounters serious problems in 
ases when the interfa
e undergoes

large deformations where the moving mesh may be
ome severely distorted [23℄. Be
ause

of this, the Eulerian mesh approa
h is preferred in many 
ases, like the volume-of-�uid [5℄,

the level set [22, 24℄ or the marker and 
ell [24℄ methods. In this work, the volume-of-�uid

method (VOF) is used and thus the text in this 
hapter refers to that spe
i�
 theory.

3.2 Fundamental Relations

Here, the volume fra
tion (also, solid 
on
entration or phase volume) of the �uid mixture

(e.g. fresh 
on
rete) within ea
h 
omputational 
ell

13

is represented with α1, while the

volume fra
tion of atmospheri
 air is represented with α2. More pre
isely, α1 = V1/VP,

where VP is the volume of the 
ell and V1 is the volume of 
on
rete within the 
ell (i.e.

V1 ≤ VP). When α1 = 1, the 
omputational 
ell is �lled only with �uid mixture, while

if α1 = 0, the 
ell is �lled only with atmospheri
 air. For the interfa
e between air and

mixture, the following applies 0 < α1 < 1. In general, the value of α1 
an range from 0

to 1. In this text, the �uid mixture (α1) will also have standard VOF designations like

14

phase 1 or �uid 1. The same applies for the atmospheri
 air (α2), i.e. phase 2 or �uid 2.

The mixed �uid's properties, density ρ and apparent vis
osity η, are weighted by the

13

The volume o

upied by the system is divided into dis
rete 
ells. All these 
ells make up the mesh.

14

Relative to Se
tion 2.3.1, Page 19, then within phase 1, namely within the �uid mixture (e.g. fresh


on
rete), the phase designations are phase 
 for the 
ontinuous phase (the matrix, e.g. mortar/mini


on
rete) and phase d for the dispersed phase (the suspended parti
les, e.g. 
oarse aggregates).
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volume fra
tions α1 and α2 of the two �uids given by Eqs. (3.1) and (3.2) [25, 26℄

ρ = α1 ρ1 + α2 ρ2 (3.1)

η = α1 η1 + α2 η2 (3.2)

In ea
h and every 
omputational 
ell, the following is always valid

α1 + α2 = 1, (3.3)

meaning that if the quantity of phase 1 is known and given by α1, then so is the quantity

of phase 2 by α2 = 1− α1. This means that it is su�
ient to 
al
ulate only the interfa
e

adve
tion for α1. This interfa
e is moved through the mesh and is 
aptured by a phase

transport equation. Relative to this spe
i�
 equation, the VOF 
an be divided between

two families, namely the dire
t methods and the re
onstru
tion methods [25℄. For the latter

approa
h, the phase transport equation is approximated typi
ally in two steps, �rst by

a geometri
 interfa
e re
onstru
tion step and thereafter by an interfa
e propagation step

[25℄. Examples of su
h approa
hes are the PLIC [27℄ and SLIC [28℄.

Unlike geometri
 interfa
e re
onstru
tion methods, the dire
t methods do not intro-

du
e geometri
al representation of the interfa
e, but rather try to maintain sharply de�ned

interfa
e by properly 
hosen dis
retization s
heme, 
ommonly known as 
ompressive dif-

feren
ing s
heme [29℄. Example of su
h are the CICSAM [30, 31℄ and HRIC [32℄. Another

method, whi
h 
ould be 
onsidered to belong to the dire
t methods is the so-
alled Weller-

s
heme [33℄ (see also [19℄). However, instead of using 
ompressive di�eren
ing s
heme like

done in CICSAM, the 
ompression of the interfa
e is a
hieved by applying an extra 
om-

pression term dire
tly into the phase transport equation [19, 24℄. This approa
h is used

here and thus explained below.

3.3 Velo
ity

In VOF, the mixed velo
ity U is generally given (or de�ned) with the following equation

[19, 23, 25, 33℄

U = α1U1 + α2U2 (3.4)

Instead of the above equation, one 
ould rather 
onsider of use the mixed velo
ity given

by Eq. (2.7) on Page 18. This would result in the following equation

U =
α1ρ1U1 + α2ρ2U2

α1ρ1 + α2ρ2
(3.5)

However, sin
e the VOF is about the treatment of immis
ible �uids (i.e. �uids that do

not generally intermix), the di�eren
e between Eqs. (3.4) and (3.5) is only present at the

thin interfa
e region, between phase 1 and 2, namely at 0 < α1 < 1. This is in 
ontrary

to the DFM in Chapter 2, whi
h is about the treatment of mis
ible �uids (i.e. �uid that
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intermix), meaning that the di�eren
e between Eqs. (3.4) and (3.5) is more or less always

present everywhere in the �uid mixture.

Regardless of whi
h equation is 
onsidered more appropriate, Eq. (3.4) or Eq. (3.5), it

is important to note that ex
ept for the short derivation below, neither are expli
itly used

in VOF, meaning that the above-mentioned di�eren
e is not of paramount importan
e.

This be
omes 
lear below Eq. (3.15), where it is explained how the mixed velo
ity U

is always solved as a single entity and not as presented with either of the two above

equations.

The relative velo
ity between the phases 1 and 2 when using Eq. (3.4) is given by

Eq. (3.6) (see also Eq. (2.15), Page 20, for the 
ase of DFM).

Ur = U1 −U2 (3.6)

When using Eq. (3.5), the above equation has to be de�ned in a di�erent manner, as

dis
ussed in Footnote 15.

In the solver interFoam, the relative velo
ity Ur is used to 
ompress the interfa
e

between phase 1 and 2 (i.e. at 0 < α1 < 1). However, sin
e neither U1 nor U2 are

a
tually resolved in VOF, Ur is not 
al
ulated as nominally de�ned in Eq. (3.6). It is

rather 
al
ulated by a semi-empiri
al formula as shown in the sour
e 
ode alphaEqn.H

through the �eld variable phir = φr = Ur · S, where the term S is the fa
e area ve
tor

[34℄ (see also Footnote 22 about the ve
tor dire
tion of S.).

3.4 Phase Transport Equation

The transport equation of ea
h volume fra
tion α1 and α2 in a 
ompressible two��uid VOF

system 
an be extra
ted from the Two-Fluid Method in Se
tion 2.2, or more pre
isely from

Eq. (2.4), Page 17. In terms of VOF quantities (e.g. βk → αi, ρk → ρi and Vk → Ui), as

well as putting Γi = 0, where i = 1, 2, the following is obtained

∂(αi ρi)

∂t
+∇ · (αi ρiUi) = 0 (3.7)

From the above equation, the transport equation in a in
ompressible two��uid VOF

system (i.e. ρi = constant) be
omes as follows, where i = 1, 2 (see also [25℄)

∂αi

∂t
+∇ · (αiUi) = 0 (3.8)

However, with α2 = 1−α1 (
.f. Eq. (3.3)), it is su�
ient to 
onsider the transport equation

of α1 only. Therefore, with i = 1, Eq. (3.8) gives

∂α1

∂t
+∇ · (α1U1) = 0 (3.9)

To solve this transport equation, the velo
ity of phase 1 is needed, namely U1. In the

mu
h used original VOF method by Hirt and Ni
hols [5℄, the velo
ity U1 is assumed to
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be equal to the mixed velo
ity U [5, 25℄. This is only valid if α1 is maintained as a step

fun
tion throughout the domain, for example, numeri
al di�usion at the interfa
e is not

allowed [25℄.

By using the velo
ity U given by Eq. (3.4) and multiply it with α1 as well as applying

Eq. (3.3), the following is obtained

α1U = α2
1U1 + α1(1− α1)U2 (3.10)

Furthermore, by multiplying Eq. (3.6) with α1(1− α1), one obtains:

α1(1− α1)Ur = α1(1− α1) (U1 −U2) (3.11)

By adding Eq. (3.10) and Eq. (3.11) together, it 
an be shown after few steps

15

that [25℄

α1U1 = α1U+Ur α1 (1− α1), (3.12)

. . .or equally. . .

U1 = U+Ur (1− α1) (3.13)

With the above result, Eq. (3.9) 
an be 
onverted to Eq. (3.14).

∂α1

∂t
+∇ · (α1U) +∇ · (Ur α1 (1− α1)) = 0 (3.14)

With the multipli
ation term α1 (1 − α1), the 
ompression term Ur α1 (1 − α1) is only
a
tive in the thin interfa
e region, between the �uid mixture and the atmospheri
 air

0 < α1 < 1.
One of the 
riti
al issues with Eq. (3.14) is the dis
retization of the adve
tion term

∇ · (α1U). Lower order s
hemes like the �rst order upwind method smear the interfa
e

due to numeri
al di�usion and higher order s
hemes are unstable, resulting in numeri-


al os
illations [24℄. Thus, it is ne
essary to apply spe
ial adve
tion s
hemes that 
an


ontribute to a sharper interfa
e and produ
e better monotoni
 pro�les of the volume

fra
tion α1 [24℄. To do this, the Flux Corre
ted Transport te
hnique (FCT) is applied,

whi
h was introdu
ed by Boris and Book [35℄ and later enhan
ed by Zalesak [36℄. Open-

FOAM implementation of FCT is named MULES (Multidimensional Universal Limiter

for Expli
it Solution) [16℄. It is based on a similar 
on
ept relative to Zalesak's limiter λ,
but its determination is iterative [16℄.

The FCT 
an be 
onsidered to be a 
ompressive di�eren
ing s
heme and thus has been

used on Eq. (3.9), with U1 = U, to maintain a sharp interfa
e [24℄. Therefore, with the

spe
ial 
ompression term in Eq. (3.14) (i.e. by Ur) and with the use of MULES (i.e. FCT),

a double 
ompression is a
tually being applied in the last-mentioned equation. Here, the

FCT is applied on both adve
tion terms in Eq. (3.14).

15

Using the same pro
edure with Eq. (3.5) and de�ning the relative velo
ity between phases with the

following ρUr = ρ1U1 − ρ2U2, one obtains α1ρ1U1 = α1ρU + Ur ρα1 (1 − α1) in the end. Using this

equation instead of Eq. (3.12), in Eq. (3.7) did not give any bene�
ial out
ome for the tested simulations.
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3.5 Governing Equation

For non-Newtonian �uids, like what applies to 
ement based materials, the governing

equation is the Cau
hy equation of motion, given by Eq. (3.15) [20, 21℄. Being a �parent�

of the Navier�Stokes equations, the Cau
hy equation is also fully valid for Newtonian

�uids like the atmospheri
 air.

∂(ρU)

∂t
+∇ · (ρUU) = −∇p +∇ ·T+ ρ g + Fs (3.15)

Sin
e the VOF method is a single pressure system [23℄, the pressure p in Eq. (3.15) is not


al
ulated separately for ea
h of the phases α1 and α2 (i.e. for 
on
rete and air). The same

applies for the velo
ity U, whi
h is stri
tly speaking given by Eq. (3.4) (or by Eq. (3.5),

depending on preferen
e). That is, the mixed velo
ity U is solved as a single entity by

Eq. (3.15). The density ρ in Eq. (3.15) is given by Eq. (3.1), the term t represents the time
and g is the gravity. The term Fs is the for
e by surfa
e tension between the two phases

α1 and α2 (e.g. fresh 
on
rete and atmospheri
 air), and is 
al
ulated in a

ordan
e with

the Continuum-Surfa
e-For
e (CSF) model of Bra
kbill et al. [37℄. The above terms will

be further dis
ussed in Se
tion 4.8. The extra stress tensor T is explained in Se
tion 3.6.

3.6 Constitutive Equation

The 
onstitutive equation 
onsists of the Generalized Newtonian Model [38℄, or in short

GNM and is given by T = 2 η ε̇ [2℄. The term ε̇ = 1
2
(∇U + (∇U)T) is known as the

rate�of�deformation tensor [20, 21, 39℄. Here, the apparent vis
osity η by is given by

Eq. (3.2), in whi
h the �uid mixture (or phase 1, e.g. fresh 
on
rete) is rheologi
ally

modeled through η1, while the atmospheri
 air (i.e. phase 2) is always set as a Newtonian
�uid η2 = constant. The 
omputational implementation of η1 into the sour
e 
ode is by

the regularization approa
h [3, 40, 41, 42, 43, 44, 45, 46℄. See also Se
tion 5.2, Page 50,

for further information about the regularization approa
h.
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Chapter 4

Combining DFM with VOF

4.1 Introdu
tion

This 
hapter deals with 
ombining the theories of the Drift Flux Model, or DFM (Chap-

ter 2) and the Volume of Fluid Method, or VOF (Chapter 3). That is, this 
hapter

represents the basis for the vvpfFoam solver. As a short 
lari�
ation, the VOF ta
kles

the treatment of immis
ible �uids (i.e. �uids that do not intermix), while DFM ta
kles

the treatment of mis
ible �uids (i.e. �uid that intermix). In addition to this, the DFM

has the 
apability to allow slip between phases (see Se
tion 2.3.1, Page 19). This is an

important aspe
t to allow the �uid mixture to segregate by gravitational settling and/or

by other means, like by the shear (rate) indu
ed parti
le migration.

4.2 The Mixture of Phase 1

In Chapter 3, the phase 1 (i.e. the �uid mixture) and phase 2 (e.g. atmospheri
 air) were

treated by the VOF. To reiterate, the volume fra
tion of phase 1 within ea
h 
omputa-

tional 
ell is represented with α1, while the volume fra
tion of phase 2 is represented with

α2. More pre
isely, α1 = V1/VP, where VP is the volume of the 
omputational 
ell and

V1 is the volume of mixture (e.g. fresh 
on
rete) within the 
ell (i.e. V1 ≤ VP). Likewise,

α2 = V2/VP, where V2 is the volume of atmospheri
 air within the same 
ell (i.e. V2 ≤ VP),

as shown in Fig. 4.1.

Figure 4.1: The division of a 
omputational 
ell between phase 2 (atmospheri
 air) and

phase 1 (mixture). The latter is further divided between the dispersed phase d and the


ontinuous phase c.
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Sin
e phase 1 will be treated with the DFM as des
ribed in Chapter 2, the main

subs
ript of that 
hapter, namely m for �mixture� (e.g. Vm for mixture volume) will also

have the subs
ript 1, in a

ordan
e with the s
heme of VOF in Chapter 3 (e.g. V1 for the

volume of phase 1). This means that the mixture mass mm is also the mass of phase 1,

namely m1, the mixture velo
ity Vm is also the velo
ity of phase 1, whi
h is designated

with U1 in Chapter 3. That is, Vm ≡ V1, mm ≡ m1, Vm ≡ U1, ρm ≡ ρ1, and so forth.

4.3 Fundamental Relations

As indi
ated above, phase 1 will 
onsist of two phases, namely the 
ontinuous phase, or

phase 
 (i.e. the matrix) and the dispersed phase, or phase d (i.e. suspended parti
les).

As explained in Chapter 2, their 
orresponding volume fra
tions are represented with βc

and βd. More pre
isely, from Eq. (2.12), Page 19, then βc = Vc/Vm and βd = Vd/Vm, in

whi
h Vm ≡ V1, 
.f. Se
tion 4.2. The term Vc is the volume of the 
ontinuous phase within

the 
ell (i.e. Vc ≤ V1 ≤ VP) and Vd is the volume of the dispersed phase within the 
ell

(i.e. Vd ≤ V1 ≤ VP).

Summarizing the fundamental relations for α1 and α2 (from Chapter 3):

VP = V1 + V2 ∧ α1 =
V1

VP
∧ α2 =

V2

VP
(4.1)

α1 + α2 =
V1

VP
+

V2

VP
=

V1 + V2

VP
=

VP

VP
= 1 (4.2)

Summarizing the fundamental relations for βc and βd (from Chapter 2):

Vm ≡ V1 = Vc + Vd ∧ βc =
Vc

V1
∧ βd =

Vd

V1
(4.3)

βd + βc =
Vd

V1
+

Vc

V1
=

Vd + Vc

V1
=

V1

V1
= 1 (4.4)

Be
ause of the 
ombination of VOF with DFM, additional de�nitions are needed for the


ontinuous phase (i.e. phase c) and the dispersed phase (i.e. phase d). These are αc and

αd, representing the volume fra
tions relative to the volume of a 
ell VP, given by

αc = Vc/VP ∧ αd = Vd/VP (4.5)

The sum of these two new quantities is equal to the volume fra
tion of the mixture,

namely

αc + αd =
Vc

VP
+

Vd

VP
=

Vc + Vd

VP
=

V1

VP
= α1 (4.6)

Repeating the out
ome of Eqs. (4.2), (4.4) and (4.6), gives:

α1 + α2 = 1 ∧ βd + βc = 1 ∧ αd + αc = α1 (4.7)
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Finally, the relationship between the two quantities βd = Vd/V1 and αd = Vd/VP is as

follows

βd =
Vd

V1
=

VP

VP

Vd

V1
=

VP

V1

Vd

VP
=

1

α1
αd (4.8)

The same 
an be 
on
luded for the 
ontinuous phase, meaning βc = αc/α1.

4.4 Mass and Density

The term mP represents the total mass of materials inside a single 
omputational 
ell and

is equal tom1+m2. The termm1 represents the mass of phase 1 (i.e. mixture) within ea
h


omputational 
ell, while the term m2 represents the mass of phase 2 (i.e. atmospheri


air) within the same 
ell.

The mass of phase 1, namely m1, is equal to mc + md. The term mc represents the

mass of phase 
 (i.e. matrix) within the above-mentioned 
omputational 
ell, while the

term md represents the mass of phase d (i.e. suspended parti
les) within the same 
ell.

Summarizing the above:

mP = m1 +m2 ∧ m1 = mc +md (4.9)

The term ρ1 is the density of phase 1, while the term ρ2 represents the density of phase

2:

ρ1 =
m1

V1
≡ mm

Vm
= ρm (Mixture) ∧ ρ2 =

m2

V2
= constant (Air) (4.10)

In the above, the following were used mm ≡ m1 and Vm ≡ V1, 
.f. Se
tion 4.2.

The term ρc is the density of phase 
 (matrix), while the term ρd represents the density
of phase d (suspended parti
les):

ρc =
mc

Vc
= constant ∧ ρd =

md

Vc
= constant (4.11)

A typi
al density value for the 
oarse aggregates is ρd = 2700 kg/m3
(dispersed phase),

while ρc = 2200 kg/m3
for the mortar/mini 
on
rete (
ontinuous phase).

In this work, the term ρ represents the total density of the 
ell (that is, in
luding both
mixture and atmospheri
 air), given by

ρ =
mP

VP
=

m1 +m2

VP
=

m1

VP
+

m2

VP
=

m1

VP

V1

V1
+

m2

VP

V2

V2
=

=
V1

VP

m1

V1
+

V2

VP

m2

V2
= α1 ρ1 + α2 ρ2

(4.12)

The above result 
orresponds to Eq. (3.1). Likewise, the density of phase 1 (e.g. of the

fresh 
on
rete), 
an be 
al
ulated by

ρ1 =
m1

V1
=

md +mc

VP α1
=

Vd ρd + Vc ρc
VP α1

=
(Vd/VP) ρd + (Vc/VP) ρc

α1

=
αd ρd + αc ρc

α1
=

αd ρd + (α1 − αd) ρc
α1

(4.13)
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An alternative method of 
al
ulating the density of phase 1 is by

ρ1 =
αd ρd + αc ρc

α1
=

V1

V1

Vd

VP
ρd +

V1

V1

Vc

VP
ρc

α1
=

Vd

V1

V1

VP
ρd +

Vc

V1

V1

VP
ρc

α1

=

Vd

V1
α1 ρd +

Vc

V1
α1 ρc

α1
= βd ρd + βc ρc = βd ρd + (1− βd) ρc

(4.14)

In the above derivations, Eqs. (4.1) to (4.7) were used.

4.5 Mass Conservation of the Dispersed Phase

4.5.1 Original State of Equation

The mass 
onservation of the dispersed phase, phase d, was derived in Se
tion 2.3.2,

Page 22, and is reprodu
ed below (see Eq. (2.41)):

∂βd

∂t
+∇ · (βdU1) +∇ ·

(

βdρc
ρm

Vdj

)

= 0 (4.15)

In the above, the mixture velo
ity Vm is repla
ed by the velo
ity of phase 1, namely

by U1 (see Se
tion 4.2). Moreover, by using Eq. (3.13), Page 29, the above equation is


onverted into the following

∂βd

∂t
+∇ · (βdU+ βd

ρc
ρ1

Vdj) +∇ · (Ur βd (1− α1)) = 0 (4.16)

The problem with the term �Ur βd (1−α1)� in the above equation, is that βd is a variable

that is in general not at its minimum (e.g. 0) nor maximum (e.g. 0.4) value. That is, it


an (and should be) in any range between the two extremes anywhere in the mixture and

this in
ludes the interfa
e. With this property, this term 
annot 
ontribute to interfa
e


ompression. This is 
ontrary to the variable α1 whi
h is fundamentally either equal to 0

or 1 and means that the traditional interFoam�term �Ur α1 (1 − α1)� is at maximum at

the surfa
e and thus 
an 
ontribute to interfa
e 
ompression. But the problem is that this

term will serve as an arti�
ial sour
e/sink inside Eq. (4.16) and thus 
annot be used as

is. To solve this, an empiri
al modi�
ation of the term �Ur βd (1− α1)� is rather applied,
in whi
h the term βd is repla
ed with ξd = ξd(α1, αd). More pre
isely, the following


onversion is done in Eq. (4.16)

Ur βd (1− α1) ⇒ Ur ξd (1− α1) (4.17)

At the time of writing, the fun
tion ξd has the following form

ξd(α1, αd) =
α1 αd

αMAX
d

(4.18)

The above fun
tion is based on trial and error, with the 
onstraint to obtain good interfa
e


ompression and also with emphasis on obtaining the best mass 
onservation. At present,

the same interfa
e 
ompression velo
ity Ur is used in Eq. (4.17) as in Eq. (3.14), Page 29.
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4.5.2 Dispersed Phase Relative to VP

With Eqs. (4.8) and (4.17), Eq. (4.16) is transformed into the following

∂(αd/α1)

∂t
+∇ · (αd

α1
U+

αd

α1

ρc
ρ1

Vdj) +∇ · (Ur ξd (1− α1)) = 0 (4.19)

With Eq. (4.19), the variable αd (whi
h is relative to the volume of the 
ell VP) is solved

and not the variable βd (whi
h is relative to the volume of phase 1, namely V1).

In this work, attempt has been made to solve Eq. (4.19) for αd, while keeping α1 
on-

stant at a value from the previous iteration. The solver does run, but mass 
onservations

are not kept. Be
ause of this, a 
hanged version of Eq. (4.19) is rather used, obtained by

�xing α1 to 1. This modi�ed version

16

is shown below:

∂αd

∂t
+∇ · (αdU+ αd

ρc
ρ1

Vdj) +∇ · (Ur ξd (1− α1)) = 0 (4.20)

The term �Ur ξd (1−α1)� a
ts to some extent as a sour
e/sink, and thus is responsible for
arti�
ial 
hanges in quantity of αd. In general, with more abrupt 
hanges in the �ow U,

the larger variation of Ur be
omes, 
ontributing to a larger sour
e �∇ · (Ur ξd (1 − α1))�
(see Figs. 1.11 and 1.13, Page 12).

If the term �Ur ξd (1−α1)� is omitted in Eq. (4.20), a better 
onservation is obtained.

However, without it, then for volatile/plunging �ow like shown in Fig 1.3, Page 4, the term

αd 
an push through the interfa
e, appearing to evaporate and �oat in the atmospheri


air (the 
ode shown later in Se
tion 4.7 is also meant to assist in avoiding this for the 
ase

of su
h abrupt �ow).

It should be 
lear that Eq. (4.20) is 
orre
t within the phase 1 �uid, where α1 = 1
(i.e. is identi
al to Eq. (4.19) for su
h a 
ase). However, at the interfa
e between the

atmospheri
 air (phase 2) and the mixture �uid (phase 1), namely at 0 < α1 < 1, it
be
omes theoreti
ally less 
orre
t, whi
h 
ould introdu
e a slight error in the simulation.

4.5.3 Dispersed Phase Relative to V1 or VP

It should be 
lear that an extensive

17


ell based variable (i.e. a variable 
al
ulated at a

nodal point P) is relative to the 
ell volume VP (unless a spe
ial treatment is applied to

it). Thus, with the attempt to solve for βd through Eq. (4.16), one would a
tually solve

for αd with that exa
t same equation. This is be
ause the former variable is relative to

V1, while the latter variable is relative to VP, a normalization that is native to FVM. In

Chapter 2, when only treating the DFM, the mixture volume V1 ≡ Vm is always equal to

the 
ell volume VP, making the above dis
ussion irrelevant.

16

In the �le alphaDEqn.H, a sour
e term Sp αd + Su is added to the right side of Eq. (4.20), in whi
h

both Sp and Su are set equal to zero (units of Sp and Su are [s−1
℄).

17

An extensive variable is one whose magnitude is dependent of the size of the system (examples:

volume, mass, heat 
apa
ity). An intensive variable is one whose magnitude is independent of the size of

the system (examples: temperature, pressure, spe
i�
 heat 
apa
ity).
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The reason for going through the steps of generating Eq. (4.19) and thereafter trans-

forming it to Eq. (4.20), is out of ne
essity to maintain 
onservation of the quantity of the

dispersed phase (i.e. keeping it more or less 
onstant throughout the simulation). This

also helps to understand the (ne
essary) physi
al error involved in the solver vvpfFoam.

4.6 Phase Transport Equation

The transport equation of ea
h volume fra
tion α1 and α2 
an be extra
ted from Eq. (3.7)

in Se
tion 3.4 and is reprodu
ed below:

∂(αi ρi)

∂t
+∇ · (αi ρiUi) = 0 (4.21)

As mentioned in Se
tion 3.4, with α2 = 1 − α1, it is su�
ient to 
onsider the transport

equation of α1 only and as su
h, only applying i = 1 to Eq. (4.21), results in

∂(α1 ρ1)

∂t
+∇ · (α1 ρ1U1) = 0 (4.22)

Furthermore, by applying Eq. (3.12), the following is obtained

∂(α1 ρ1)

∂t
+∇ · (α1 ρ1U) +∇ · (Ur ρ1 α1 (1− α1)) = 0 (4.23)

The above equation is solved

18

in alpha1EqnRho.H. By applying it, there emerges a slight

volume 
hange in phase 1, say 0.3% or so, during a typi
al simulation run (see Figs. 1.11

and 1.13, Page 12). If this is una

eptable, the user 
an rather use alpha1Eqn.H, whi
h

returns better 
onservation. However, that �le solves Eq. (4.23) with ρ1 = constant, whi
h
is not in a

ordan
e with Eq. (4.13).

It should be 
lear that there is no di�eren
e visually observable in the overall �ow, when


omparing the use of alpha1Eqn.H with the use of alpha1EqnRho.H. An example of this

is shown in Fig. 4.2, whi
h demonstrates the �
ake break� �ow through pillars obsta
les

(see Se
tion 1.4.1 on Page 5, about the 
ase setup). The simulation is split into two parts,

in whi
h the left part (green) is solved by Eq. (4.23) as is (i.e. with alpha1EqnRho.H),

while the right part (white) is solved with the same equation however with ρ1 = constant
(i.e. with alpha1Eqn.H). As shown, the left (green) and the right (white) part meet at

the 
enter, exa
tly. The overall volume 
hange for phase 1 (i.e. of α1) is less than 0.2%

for the left simulation, while 0% for the right simulation. In these two simulations, no

di�eren
e is observed in αd = αd(x, y, z, t), solved by Eq. (4.20) (as well as none in terms

of βd = αd/α1 by Eq. (4.8)). The total simulation time is 30 s, whi
h means �Time index:

300� relative to Fig. 4.2.

Whi
hever sour
e is used, the 
hange is made in the �le ma
roDefinitions.H, set

by the ma
ro de�nition ALPHA1RHO_SOLVE. If de�ned, then alpha1EqnRho.H is used, and

if not, alpha1Eqn.H is used instead. Unless otherwise stated, the results shown in this

report are based on use of alpha1EqnRho.H.

18

In the �le alpha1EqnRho.H, a sour
e term Sp α1+Su is added to the right side of Eq. (4.23), in whi
h

both Sp and Su are set equal to zero (units of Sp and Su are [kg ·m−3 · s−1
℄).
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Figure 4.2: Simulation of a �
ake break� �ow through pillars obsta
les (see also Fig. 1.4).

The left part (green) is solved with alpha1EqnRho.H, while the right part (white) is solved

with alpha1Eqn.H.

4.7 Visualization of βd Relative to VP

When looking at the transport equation of phase 1, namely Eq. (4.23), it is 
lear that α1

is moved (i.e. 
onve
ted) by the velo
ity U. But, when looking at the transport equation

of the dispersed phase, namely Eq. (4.20), its quantity αd is not 
onve
ted by U alone,

but rather by the sum U + (ρc/ρ1)Vdj. Usually, the 
onve
tion is almost the same in

both 
ases of α1 and αd sin
e generally U ≈ U + (ρc/ρ1)Vdj. But in some part of the

�ow, the di�eren
e between U and U+(ρc/ρ1)Vdj 
an be su
h that the variables αd and

α1 propagate di�erently. Although the 
onsequen
e of this for either α1 or αd is none

19

,

the e�e
t of this for βd = αd/α1 (Eq. (4.8), Page 33) is that it 
an rea
h an abnormal

high value. This applies espe
ially near/at the interfa
e, where the variation in α1 is

greatest. This 
an also apply where the di�eren
e between U and U+(ρc/ρ1)Vdj is high,

as a 
onsequen
e of a new additional interfa
e 
ompression s
heme used for the dispersed

phase αd (beyond what is explained in Se
tion 4.5.2). This new interfa
e 
ompression is

implemented in driftVelo
ity.H and gravitySegregation.H and is as follows:

volVe
torField gradAlpha1(fv
::grad(alpha1));

surfa
eVe
torField gradAlpha1f(fv
::interpolate(gradAlpha1));

surfa
eVe
torField interfa
eNormal(gradAlpha1f/(mag(gradAlpha1f) + deltaN));

forAll(alpha1.internalField(), 
elli)

{

if

(

alpha1[
elli℄ > lowerCrit.value()

&& alpha1[
elli℄ < upperCrit.value()

&& alphaD[
elli℄ > 
riteriaD.value()

)

{

VdjGR[
elli℄ = (1.0 - alpha1[
elli℄)*0.2100*interfa
eNormal[
elli℄;

19

Both αd and α1 have their own partial di�erential equation, namely Eqs. (4.20) and (4.23), that 
an

in a sense operate independent of ea
h other.
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}

else if (alpha1[
elli℄ <= lowerCrit.value())

{

VdjGR[
elli℄ = (1.0 - alpha1[
elli℄)*0.0306*g.value();

}

}

Conve
tion by U from a 
ell depleted of α1 into a neighboring 
ell, with the 
on-


omitant 
onve
tion by U + (ρc/ρ1)Vdj, from an another 
ell full of αd, into the same

neighboring 
ell, results in build up of βd = αd/α1. This parti
ular build up has mostly

no 
onsequen
e other than being visually annoying (i.e. sin
e βd is 
al
ulated and not

solved by a partial di�erential equation, as applies for α1 and αd).

An example of the above-mentioned properties of βd is shown in Fig. 4.3, marked with

a green square. For this 
ell, the volume fra
tion of phase 1 is α1 = 0.5, while the volume
fra
tion of the dispersed phase is αd = 0.2. This results in too high value of βd = 0.4
shown in the �gure, whi
h might be in
orre
tly understood as mass generation at the

interfa
e.

Figure 4.3: Example of βd (a), αd (b) and α1 (
) distribution of the same 
ase.

To avoid singularity in the 
ode UEqn.H, the 
al
ulation of βd/(1− βd) is performed,
as opposed to αd/(α1 − αd), and the above-mentioned behavior of βd might disturb the

simulation somewhat at the interfa
e between atmospheri
 air and mixture. The relevant

part of the UEqn.H 
ode is as follows (see also Eq. (4.33)):

volS
alarField alphaDrho1Ratio

(

"alphaDrho1Ratio",

(betaD/(s
alar(1) - betaD))*((rhoC*rhoD)/rho1)

// (alphaD/((alpha1 + delta) - alphaD))*((rhoC*rhoD)/rho1)

);

4.8 Governing Equation

4.8.1 Momentum Equation for Phases 1 and 2 (VOF)

The governing equation for the 
ombined system of phases 1 (mixture) and 2 (atmospheri


air) is solved by the VOF, given by Eq. (3.15), Page 30, and reprodu
ed below:

∂(ρU)

∂t
+∇ · (ρUU) = −∇p +∇ ·T+ ρ g + Fs (4.24)
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As mentioned in Chapter 3, the mixed �uid's properties, density ρ and apparent vis
osity

η, are weighted by the volume fra
tions α1 and α2 [25, 26℄. These were given by Eqs. (3.1),

(3.2) and (3.4), and are reprodu
ed below

20

:

ρ = α1 ρ1 + α2 ρ2 (4.25)

η = α1 η1 + α2 η2 (4.26)

U = α1U1 + α2U2 (4.27)

With the extra stress tensor T = 2 η ε̇ and the rate�of�deformation tensor ε̇ = 1
2
(∇U +

(∇U)T) (see Se
tion 3.6), 
ombined with Eqs. (4.26) and (4.27), at α1 = 1 (i.e. inside the
phase 1 �uid), the following is obtained

T = α1T1 = 2 η1 ε̇1 = 2 η1

[

1

2
(∇U1 + (∇U1)

T)

]

(4.28)

Furthermore, inside the mixture �uid, the pressure 
an be designated with p1, meaning

p|α1=1 = p1 (4.29)

Finally, the term Fs is the for
e by surfa
e tension between the two phases α1 and α2 [37℄,

and is thus only a
tive at the thin interfa
e region, namely at 0 < α1 < 1. That is, inside
phase 1 at α1 = 1, then Fs = 0.

Fs|α1=1 = 0 (4.30)

With Eqs. (4.25) to (4.30) at α1 = 1 (i.e. inside the phase 1 �uid), Eq. (4.24) is transformed
into the following

∂(ρ1U1)

∂t
+∇ · (ρ1U1U1) = −∇p1 +∇ ·T1 + ρ1 g (4.31)

The above is the governing equation that is valid inside the phase 1 �uid (α1 = 1) relative
to the VOF method.

4.8.2 Momentum Equation for Phase 1 (DFM)

The governing equation that is valid inside the phase 1 �uid (α1 = 1) relative to the DFM
method is given by Eq. (2.60), Page 25, and reprodu
ed below:

∂(ρ1U1)

∂t
+∇· (ρ1U1U1)+∇·

([

βd

1− βd

ρcρd
ρ1

]

VdjVdj

)

= −∇p1+∇·T1+ρ1g (4.32)

In the above, the mixture velo
ity Vm has been repla
ed with the velo
ity of phase 1,

namely with U1 and the mixture density ρm with ρ1. Also, the extra stress tensor Tm

has been repla
ed with T1 and mixture pressure pm with p1. All these 
hanges are in

a

ordan
e with Se
tion 4.2.

20

In relation to the velo
ity U, see also the text in Se
tions 3.3 and 3.5, Page 27.
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4.8.3 Momentum Equation for Phases 1 and 2 (VOF & DFM)

It should be 
lear that Eq. (4.31) is part of Eq. (4.24). The latter equation applies to the


ombined system of phase 1 and 2 �uids, while the former applies only for the phase 1

�uid. Moreover, with Eq. (4.31) (and thus Eq. (4.24)), the phase 1 �uid 
annot segregate,

meaning that slippage between phase 
 and phase d 
annot o

ur inside it.

By 
omparison of Eq. (4.31) (whi
h is a part of Eq. (4.24)) with Eq. (4.32), it 
an be

suggested that the 
omponent needed in Eq. (4.24), to allow for slippage between phase


 and phase d, is given by the following

∇ ·
([

βd

1− βd

ρcρd
ρ1

]

VdjVdj

)

= ∇ ·
([

αd

α1 − αd

ρcρd
ρ1

]

VdjVdj

)

(4.33)

In
luding Eq. (4.33) into the left side of Eq. (4.24), results in the following

∂(ρU)

∂t
+∇ · (ρUU) +∇ ·

([

βd

1− βd

ρcρd
ρ1

]

VdjVdj

)

= −∇p+∇ ·T+ ρ g+Fs (4.34)

Be
ause βd = 0 ∧ αd = 0 when α1 = 0, Eq. (4.34) returns to Eq. (4.24) in phase 2 (i.e. in

the atmospheri
 air). Furthermore, for α1 = 1 (i.e. inside the mixture), Eq. (4.34) returns
to Eq. (4.32) (keeping Eqs. (4.29) and (4.30) in mind).

Modi�ed Pressure

Here, the (total) pressure p is substituted by a modi�ed version of it, namely by p_rgh.
The impli
ations and bene�ts of the modi�ed pressure p_rgh is well explained in [19, 23,

25℄. The relationship between p and p_rgh is given by

p = p_rgh + ρg · x + pRef (4.35)

The term pRef is a (
onstant) referen
e pressure, often set equal to zero and the term

x = xkik = xxix + xyiy + xziz is the ve
tor lo
ation of a �uid parti
le in the system. The

philosophi
al understanding of the term x relative to a �uid parti
le (also, 
ontinuum

parti
le) is well des
ribed in [3℄ in Chapter 2, entitled Des
ription of Fluid. Applying the

gradient operator on Eq. (4.35), gives the following

−∇p = −∇(p_rgh + ρg · x + pRef) = −∇p_rgh−∇(ρg · x). (4.36)

To 
al
ulate the last term in the above equation, one 
an use indi
ial notation, with

summation 
onvention [20, 21, 39℄ (see also Footnote 12, Page 25). Here, k and p are the

running indi
es (i.e. k = x,y,z or 1,2,3), where x, y and z (or, 1, 2 and 3) are the spe
i�


Cartesian 
oordinates. The term ik is the unit ve
tor in the dire
tion of k.

∇(g · x ρ) = iz
∂

∂xz
(gkik · xpip ρ) =

(

iz
∂

∂xz
(gkik)

)

· xpip ρ+ gkik ·
(

iz
∂

∂xz
(xpip)

)

ρ+ gkik · xpip iz
∂ρ

∂xz
=

= ∇g · x ρ+ g · ∇x ρ+ g · x∇ρ = g · ∇x ρ+ g · x∇ρ

(4.37)
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In the above last line, the term ∇g is zero, sin
e the gravity g is a 
onstant. Going further

with the above and using the Krone
ker delta

21

:

g · ∇x = gkik · ∂xp

∂xz
izip = gk(ik · iz)∂xp

∂xz
ip = gkδkz

∂xp

∂xz
ip =

gk
∂xp

∂xk
ip = gkδpkip = gkik = g

(4.38)

Thus, from Eqs. (4.37) and (4.38), the following 
on
lusion 
an be obtained

∇(ρg · x) = g ρ+ g · x∇ρ. (4.39)

Finally, by using the above result in Eq. (4.36) the following is arrived at

−∇p = −∇p_rgh− ρg− g · x∇ρ. (4.40)

Surfa
e Tension For
e

To a

ount for the surfa
e tension between the atmospheri
 air and mixture, the Continuum-

Surfa
e-For
e (CSF) model of Bra
kbill is used [37℄ (see also [26, 30℄). Bra
kbill inter-

preted the surfa
e tension as a 
ontinuous, three-dimensional e�e
t a
ross an interfa
e. In

this approa
h, the interfa
e is neither tra
ked expli
itly nor are shape or lo
ation known

[26℄. Therefore, an exa
t boundary 
ondition 
annot be applied to the interfa
e [26℄. The

surfa
e tension for
e that applies for the CSF model is given by

Fs = σ κ∇α1 (4.41)

The terms σ and κ are the surfa
e tension and the 
urvature of the interfa
e, respe
tively.

Final Governing Equation

Now, using Eqs. (4.40) and (4.41) in Eq. (4.34), the following emerges

∂(ρU)
∂t

+∇ · (ρUU) +∇ ·
([

βd

1−βd

ρcρd
ρ1

]

VdjVdj

)

=

−∇p_rgh +∇ ·T− g · x∇ρ+ σ κ∇α1

(4.42)

In
luding Single Referen
e Frame (SRF)

If needed, the so�
alled single referen
e frame (SRF) approa
h [47℄ 
an be a
tivated. This

is done by un
ommenting the line #define SINGLE_REFERENCE_FRAME in the sour
e �le

ma
roDefinitions.H and thereafter re
ompile the solver. When taking this step, the


omputational domain represents no longer an inertial referen
e frame [48℄. With this,

the Coriolis for
e Fcor = 2 ρω×U and the 
entrifugal for
e Fcen = ρω× (ω×x) have to
be in
luded into the governing equation [48℄ as shown below

∂(ρU)
∂t

+∇ · (ρUU) +∇ ·
([

βd

1−βd

ρcρd
ρ1

]

VdjVdj

)

+ Fcor + Fcen =

−∇p_rgh +∇ ·T− g · x∇ρ+ σ κ∇α1

(4.43)

21

The Krone
ker delta is written as δij where δij = 1 if i = j and δij = 0 if i 6= j [20℄.
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Ex
ept for the angular velo
ity ω [rad/s℄, all variables (i.e. α1, γ̇, U, p_rgh and et
.)

are relative to the non�inertial (i.e. rotating) referen
e. S
alar equations like Eqs. (4.20)

and (4.23) remains un
hanged [48℄ in this framework. Furthermore, s
alar quantities like

ρ, α1, αd, γ̇ or p_rgh appear the same in inertial and non�inertial referen
e frames, as

does their material derivative [48℄. However, for a ve
tor quantity like the velo
ity U, the

transformation between the two referen
e frames isUin = U+ω×x, where Uin is the iner-

tial velo
ity [48℄. The transformation is done in the sour
e 
ode enableFieldControl.H,

as shown with the following 
ode:

#ifdef SINGLE_REFERENCE_FRAME

Uin = U + (Omega ^ mesh.C());

#endif

Governing Equation in a Semi-Dis
retized Form

Writing Eq. (4.42)/(4.43) in a semi-dis
retized form at the nodal point P of a 
omputa-

tional 
ell, results in

aPUP = H(U)−∇p_rgh− g · x∇ρ+ σ κ∇α1 (4.44)

As indi
ated, the term UP is the velo
ity at the nodal point. The ve
tor H(U) in
ludes
everything on the left side (i.e. on the �rst line) of Eq. (4.42) ex
ept for any terms


ontaining velo
ity of the 
urrent time step, lo
ated on the diagonal of the array generated

by fvVe
torMatrix UEqn(). However, H(U) does in
lude UP from previous time step,

namely Uold
P (i.e. from ∂(ρU)/∂t ≈ (ρPUP − ρoldP Uold

P )/∆t, or similar).
Isolating UP in Eq. (4.44) results in the following equation

UP =
H(U)

aP
− ∇p_rgh

aP
− g · x∇ρ

aP
+

σ κ∇α1

aP
(4.45)

4.9 Pressure Equation

4.9.1 Continuity Equation

In a

ordan
e with Eq. (2.9), the 
ombined 
ontinuity equation for the mixture and

atmospheri
 air is as follows

∂ρ

∂t
+∇ · (ρU) =

∂ρ

∂t
+U · ∇ρ+ ρ∇ ·U =

dρ

dt
+ ρ∇ ·U = 0 (4.46)

The above 
an also be derived from standard 
ontinuum me
hani
s (see for example

[20, 21℄ as well as [3℄, Pages 386 to 387). Now, rearranging Eq. (4.46) into the following

∇ ·U = −1

ρ

dρ

dt
(4.47)
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The above 
an be used together with Eq. (4.45) to generate the so-
alled pressure equa-

tion (see also [25, 49℄ about the pressure equation). In this work, this was attempted. A

pressure equation similar to what is implemented in the settlingFoam solver was tested.

Unfortunately, the implementation resulted in frequent run 
rashes and extreme sensitiv-

ity towards the use of higher solid 
on
entration values for αd. That is, αd values higher

than say 10−2
started to result in run 
rashes. Thus, another approa
h was needed in

generating the pressure equation.

For 
ompressible gas, a 10% variation in density (i.e. 0.1 ·ρ) 
an o

ur within a fra
tion
of a se
ond, giving

1

ρ

dρ

dt
≈ 1

ρ

∆ρ

∆t
=

1

ρ

(

0.1 · ρ
0.1 s

)

= 1 s−1, (4.48)

and thus ∇ · U = 0 
annot be assumed for this parti
ular 
ase. However, for a highly

vis
ous �uid like the fresh 
on
rete, a 10% variation in density (0.1 · ρ) by settling (or

other means) typi
ally o

urs, say, during minutes or longer, resulting in the following


ondition

1

ρ

dρ

dt
≈ 1

ρ

∆ρ

∆t
=

1

ρ

(

0.1 · ρ
100 s

)

≤ 10−3 s−1
(4.49)

Thus, for su
h 
ase, one 
an suggest the use of Eq. (4.50) when generating the pressure

equation.

∇ ·U = 0 (4.50)

A third approa
h (Eq. (4.47) being the �rst, and Eq. (4.50) the se
ond) is possible 
on-

sisting of using the result of Eq. (2.47), Page 23, reprodu
ed with Eq. (4.51).

∇ ·U = ∇ ·R (4.51)

In the above, the mixture velo
ity Vm was repla
ed by U1 (see Se
tion 4.2), whi
h again

was repla
ed by U, sin
e R = 0 in the atmospheri
 air (i.e. in phase 2, meaning α2 = 1),
where Eq. (4.50) is retrieved (
.f. ρ2 = constant). The term R is de�ned with Eq. (2.48)

and reprodu
ed below:

R =

(

βd

[

ρd − ρc
ρm

]

Vdj

)

(4.52)

Using Eq. (4.51) with Eq. (4.45) results in the following

∇ · H(U)

aP
−∇ · ∇p_rgh

aP
−∇ · g · x∇ρ

aP
+∇ · σ κ∇α1

aP
= ∇ ·R (4.53)

Rearranging and integrating over an arbitrary 
ell volume VP:

∫

VP
∇ ·
(

1
aP
∇p_rgh

)

dV =
∫

VP

(

∇ · H(U)
aP

−∇ · g·x∇ρ

aP
+∇ · σ κ∇α1

aP
−∇ ·R

)

dV (4.54)
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Sin
e the right side of Eq. (4.54) is evaluated with the divergen
e operator fv
::div(),

it has to be multiplied with the fa
e area ve
tor

22 S = n|S|, where n is the 
orresponding

unit normal ve
tor. With this step, there is apparently a physi
al-unit mismat
h between

between the left side and right side of this equation. But a
tually, this is not the 
ase

sin
e fv
::div() operator is overloaded in su
h manner. After this step, Eq. (4.54) has

the following form

23

∫

VP
∇ ·
(

1
aP
∇p_rgh

)

f
dV =

∫

VP
∇ ·
(

(

H(U)
aP

)

f
· S
)

dV+

∫

VP
∇ ·
[

(σ κ n · ∇α1 − g · x n · ∇ρ)f

(

1
aP

)

f
|S| −Rf · S

]

dV
(4.55)

The right side of the above is 
al
ulated by the Gauss's theorem and therefore values

that apply at the 
ell fa
es are shown. To reiterate the above text about fv
::div(),

the

∫

∇ ·R dV =
∫

Rf · dS is 
al
ulated as

∑

f Rf and not as

∑

f Rf · S and thus the

operation of the fa
e �ux on the right side of Eq. (4.55) is ne
essary (i.e. 
al
ulation of

Rf · S is needed before applying fv
::div()). However, for the left hand side, then

∫

∇ · (b∇p) dV is evaluated with

∑

f (bfS · ∇p)f , whi
h means that there is no need to

operate the fa
e area �ux S before applying the Lapla
ian operator. That is, the left

side of Eq. (4.55) is evaluated with the fvm::lapla
ian() operator, as shown with the

following se
tion of the sour
e 
ode pEqn.H:

fvS
alarMatrix p_rghEqn

(

fvm::lapla
ian(rAUf, p_rgh) == fv
::div(phiHbyA)

);

in whi
h lapla
ian(rAUf, p_rgh) is given by

lapla
ian(rAUf, p_rgh) =
(

1
aP
∇p_rgh

)

f
(4.56)

and phiHbyA by

phiHbyA =
(

H(U)
aP

)

f
· S+ (σ κ n · ∇α1 − g · x n · ∇ρ)f

(

1
aP

)

f
|S| −Rf · S (4.57)

As shown in the 
ode pEqn.H, the term −Rf · S is added to the pressure equation with

phiHbyA += pResidue, in whi
h −Rf is 
al
ulated as:

volS
alarField densityVariation

(

"densityVariation",

22

Usually, the fa
e area ve
tor S is drawn as pointing outward from a 
ell. However, this a
tually

depends on the label of the 
ell in question and the label of the neighboring 
ell, the ve
tor pointing into

the 
ell of higher label number. The 
ell with the lower label number is the owner of the fa
e in question.

23

When operating the fa
e area ve
tor S, it has to be on a fa
e value of a ve
tor (or tensor) instead of

on the 
orresponding nodal point value (i.e. S ·Rf and not S ·R).
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betaD*((rhoD - rhoC)/rho1)

);

surfa
eS
alarField pResidue

(

-fv
::interpolate(densityVariation)*phiVdj

);

In the above, the term phiVdj is 
al
ulated withVdj ·S = VGR
dj ·S+VSR

dj ·S. More pre
isely,

in parti
leMigration.H, gravitySegregation.H and driftVelo
ity.H, respe
tively,

then:

phiVdjSR = fv
::interpolate(VdjSR) & mesh.Sf();

phiVdjGR = fv
::interpolate(VdjGR) & mesh.Sf();

phiVdj = phiVdjGR + phiVdjSR;

In pEqn.H, the total �ux φf = phi, through ea
h single fa
e of an arbitrary 
ell, is


al
ulated with:

phi = phiHbyA - p_rghEqn.flux();

More spe
i�
ally, the above 
ode represents the following equation

φf =
(

H(U)
aP

)

f
· S+ (σ κ n · ∇α1 − g · x n · ∇ρ)f

(

1
aP

)

f
|S|

− Rf · S−
(

1
aP
∇p_rgh

)

f
· S

(4.58)

The term p_rghEqn.flux() is the o� diagonal part of the array in p_rghEqn, given by

p_rghEqn.flux() =
(

1
aP
∇p_rgh

)

f
· S

(4.59)

By summing the �ux Eq. (4.58) of all fa
es for a single arbitrary 
ell, the following is

obtained

∑

f φf =
∑

f

(

H(U)
aP

)

f
· S+

∑

f (σ κ n · ∇α1 − g · x n · ∇ρ)f

(

1
aP

)

f
|S|

− ∑

f Rf · S−∑f

(

1
aP
∇p_rgh

)

f
· S

=
∫

∂VP

(

H(U)
aP

)

f
· dS+

∫

∂VP
(σ κ∇α1 − g · x∇ρ)f

(

1
aP

)

f
dS

−
∫

∂VP
Rf · dS−

∫

∂VP

(

1
aP
∇p_rgh

)

f
· dS

=
∫

VP
∇ · H(U)

aP
dV −

∫

VP
∇ · g·x∇ρ

aP
dV +

∫

VP
∇ · σ κ∇α1

aP
dV

−
∫

VP
∇ ·R dV −

∫

VP
∇ ·
(

1
aP
∇p_rgh

)

dV = 0

(4.60)

In the last two lines, the Gauss theorem was applied, while the out
ome of zero in the end

(i.e.

∑

f φf = 0) is in a

ordan
e with Eq. (4.54). The out
ome of Eq. (4.60) means that

when 
al
ulating the �ux by Eq. (4.58), 
ontinuity by Eq. (4.51) is automati
ally ful�lled.
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4.9.2 Expli
it Velo
ity Corre
tion

In the sour
e 
ode pEqn.H, the term φg = phig is 
al
ulated as follows:

surfa
eS
alarField phig

(

(

fv
::interpolate(sigmaK)*fv
::snGrad(alpha1)

- ghf*fv
::snGrad(rho)

)*rAUf*mesh.magSf()

);

With rAUf = (1/aP)f , then phig/rAUf is equal to

phig/rAUf =

(

(σ κ n · ∇α1 − g · x n · ∇ρ)f

(

1

aP

)

f

|S|
)

aP|f (4.61)

. . .and through Eq. (4.59), then. . .

p_rghEqn.flux()/rAUf =

[

(

1

aP
∇p_rgh

)

f

· S
]

aP|f (4.62)

The di�eren
e between the two above equations is as follows

(phig - p_rghEqn.flux())/rAUf =
(σ κ n · ∇α1 − g · x n · ∇ρ)f |S| − ∇p_rgh|f · S (4.63)

Making the above result valid at nodal point P (instead of at a 
ell fa
e):

fv
::re
onstru
t((phig - p_rghEqn.flux())/rAUf) =
σ κ∇α1 − g · x∇ρ−∇p_rgh

(4.64)

Thus the �nal velo
ity 
orre
tor UP, 
al
ulated at nodal point P, and given by the fol-

lowing 
ode. . .

U = HbyA + rAU*fv
::re
onstru
t((phig - p_rghEqn.flux())/rAUf);

. . .and is exa
tly the same as Eq. (4.45), whi
h is reprodu
ed below:

UP =
H(U)

aP
− ∇p_rgh

aP
− g · x∇ρ

aP
+

σ κ∇α1

aP
(4.65)

The in�uen
e of ∇ · R on the above equation is through its use of p_rgh, whi
h is

obtained solving the pressure equation Eq. (4.55). If pimple.momentumPredi
tor() is

true, then ∇ · R will also a�e
t the new predi
tion of U (i.e. UP) through solve(UEqn

== fv
::re
onstru
t(. . . - fv
::snGrad(p_rgh). . . )) in UEqn.H. Also, sin
e the �ux


al
ulation φf = phi by Eq. (4.58) is frequently used, in
luding in fvVe
torMatrix

UEqn(...) through fvm::div(rhoPhi, U) (whi
h gives H(U)), as well as in the 
al
u-

lation of α1 and αd 
onve
tion in alpha1EqnRho.H and alphaDEqn.H, the e�e
t of ∇ ·R
will basi
ally resonate everywhere in the 
ode. The same 
onsideration would arise if

Eq. (4.47) would be used instead of Eq. (4.51).

Part of the sour
e 
ode pEqn.H reads as follows:
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phiHbyA += phig;

#ifdef USE_PRESSURE_RESIDUE

volS
alarField densityVariation

(

"densityVariation",

betaD*((rhoD - rhoC)/rho1)

// alpha1*betaD*((rhoD - rhoC)/rho1)

);

surfa
eS
alarField pResidue

(

-fv
::interpolate(densityVariation)*phiVdj

);

phiHbyA += pResidue;

#endif

while (pimple.
orre
tNonOrthogonal())

{

fvS
alarMatrix p_rghEqn

(

fvm::lapla
ian(rAUf, p_rgh) == fv
::div(phiHbyA)

);

...

As shown in the above 
ode, the user 
an de
ide if Eq. (4.55) is solved with R = 0
(i.e. solving for Eq. (4.50)) or with R as given by Eq. (4.52) (i.e. solving for Eq. (4.51)).

This is 
ontrolled with the ma
ro de�nition USE_PRESSURE_RESIDUE in the sour
e 
ode

ma
roDefinitions.H. The default setup in the sour
e 
ode is using R = 0. This is not
a bad 
hoi
e when 
onsidering the result of Eq. (4.49). Most of the simulation results

shown in this report are solved in this manner. However, the term R by Eqs. (4.51) and

(4.52), has for example been used in [16℄. Thus, applying this last-mentioned approa
h is

apparently neither a bad 
hoi
e.

4.9.3 Monitoring ∇ ·U
In the sour
e 
ode 
omprsblContErrs.H, the information about ∇ ·U is exported to the


onsole. More pre
isely, the term magWeightedAverageDivPhi is shown and 
al
ulated

as:

Ew(t) =

∫ t

0

|∇ ·U(x, t∗)|w dt∗ (4.66)

where |∇ ·U|w is the weighted average of |∇ ·U| relative to mass of materials in ea
h 
ell

(i.e. weightedAverage(rho*mesh.V())) and x represents the 
oordinates x, y and z.
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The term Ew(t) 
an be divided by the 
urrent time t, whi
h then 
an be 
onsidered

as measure of in
ompressibility at time t. The produ
t of this, namely ew(t) is given by

Eq. (4.67). A value of e(t) = 0 would represent a 
omplete in
ompressibility, or ∇·U = 0.

ew(t) =
Ew(t)

t
=

1

t

∫ t

0

|∇ ·U(x, t∗)|w dt∗ (4.67)

Fig. 4.4 shows the 
al
ulation results of |∇ ·U|w and ew as a fun
tion of time, for the


ase of Figs. 1.12 and 1.13, Page 13 (note, R = 0 in this 
ase). As shown, the value of

e(t) ≈ 10−7 s−1
is obtained, whi
h is fairly 
lose to in
ompressibility. If the 
al
ulations

are repeated without magnitude (i.e. without mag() in the above 
ode), the result is an

order of magnitude less, or 10−8 [s−1].
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Figure 4.4: Cal
ulations of |∇ ·U|w (shown to the left) and ew(t) (shown to the right) for

the 
ase of Figs. 1.12 and 1.13 (Page 13).
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Chapter 5

Rheologi
al Behavior of the Mixture

5.1 Apparent Vis
osity

As dis
ussed in Se
tion 4.8.1 (see also Chapter 3), the 
ombined apparent vis
osity η of

the atmospheri
 air (phase 2) and the �uid mixture (phase 1) are weighted by the volume

fra
tions α1 and α2 [25, 26℄

η = α1 η1 + α2 η2 (5.1)

in whi
h the �uid mixture is modeled through η1, while the atmospheri
 air (i.e. phase 2)
is always set as a Newtonian �uid η2 = constant. As a starting point, the mixture �uid


an be (nominally) modelled in the same manner as done by Eq. (5.1), namely

24

with

η1 = βc ηc + βd ηd (5.2)

where βc and βd are the volume fra
tion of phase 
 and d, respe
tively, 
.f. Chapter 2.

The terms ηc and ηd are their respe
tive apparent vis
osities. When the mixture �uid is

a suspension, the phase d represents suspended parti
les (e.g. 
oarse aggregates), while

phase 
 represents the matrix.

As des
ribed in [3℄ on Pages 237 to 239, the apparent vis
osity is fundamentally de-

�ned by the (rate of) momentum transfer between parti
les. Thus, when determining the

apparent vis
osity for suspended parti
les alone, it be
omes very dependent on the dis-

tan
e between parti
les, i.e. on the amount of matrix βc present in the overall suspension.

This means that ηd depends at least on βc, meaning ηd = ηd(βc). Also, sin
e the quantity
of suspended parti
les will in�uen
e the lo
al shear rate γ̇c in the matrix (see Fig. 4.5

in [3℄), whi
h 
ould in�uen
e the e�e
t of ηc, then at least ηc = ηc(βd). In addition to

this, the matrix usually 
onsists of a non-Newtonian �uid whi
h 
ompli
ates the behavior

in Eq. (5.2) still further. There will also be an additional nonlinear behavior present in

η1 be
ause of the dense solid 
on
entration βd used in the mixture. Instead of trying

to resolve Eq. (5.2) (i.e. using a superpositioning between ηc and ηd), a more empiri
al

24

See also the text below Eq. (2.53) on Page 24.

49



5.2. Empiri
al Approa
h

IRF (RANNIS)

Grant No. 163382-05

approa
h is traditionally used, namely by modeling η1 dire
tly as a fun
tion of βd with

other materials parameters and �ow properties, e.g. η1 = η1(γ̇, βd, . . .).
In the following text of this 
hapter, when dis
ussing the solid 
on
entration of the

suspended parti
les (see also Footnote 2, Page 2), the term ϕ is used instead of βd

or αd. That is, the term ϕ 
an be equal to αd or βd, depending on user preferen
e.

Whi
hever is applied, the modi�
ation is made in the sour
e 
odes 
orre
tVis
osity.H,

gravitySegregation.H and parti
leMigration.H. Note, making the same 
hoi
e in all

the three 
odes is not ne
essary. Again, this depends on user preferen
e and knowledge

of the material and the overall �ow system, whi
h is being investigated.

5.2 Empiri
al Approa
h

5.2.1 Linear Weight Fun
tion

Normalizing Relative to wf(0) = 1

For the more traditional suspension of monosized spheres submerged in a Newtonian

liquid with vis
osity of η0, the apparent vis
osity is generally given by Eq. (5.3):

η1(ϕ) = wf (ϕ) · η0 (5.3)

Usually, the weight fun
tion has the property of wf(0) = 1, meaning that the apparent

vis
osity of the mixture η1 approa
hes that of the matrix η0 as the solid 
on
entration

is de
reased. In the 
ase of Einstein's model, this weight fun
tion is given by wf(ϕ) =
1+2.5ϕ, while for the Krieger-Dougherty equation it is wf(ϕ) = (1−ϕ/ϕm)

−[η]ϕm
, where

[η] is the 
o-
alled intrinsi
 vis
osity and ϕm is the maximum pa
king fra
tion [2, 50, 51℄.

Normalizing Relative to wf(ϕ0) = 1, in whi
h ϕ0 > 0

Rather than using a referen
e point for η0 that is relative to zero volume fra
tion (ϕ = 0),
like initially done in Eq. (5.3), one 
an use this equation with a referen
e point relative to

a (nominal/initial) homogeneous mixture i.e. when no segregation has o

urred (no slip

between phases, 
.f. Se
tion 2.3.1). At this point, the volume fra
tion is designated with

ϕ = ϕ0, in whi
h �0� symbolizes initial state of 
on
entration. The main property of ϕ0

is wf(ϕ0) = 1.
Using the above approa
h, one 
an use a linear weight fun
tion wf(ϕ), whi
h is

bounded between spe
i�
 values wmax
f and wmin

f . Furthermore, limit values 
an be set

for the volume fra
tion ϕ, given by a minimum value ϕmin
and a maximum value ϕmax

.

An example of a linear weight fun
tion that is 
onstrained by these properties is given

by:

wf(ϕ) =
wmax

f − wmin
f

ϕmax − ϕmin
· (ϕ− ϕmin) + wmin

f (5.4)
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To maintain the important property wf(ϕ0) = 1, then relative to Eq. (5.4), the term ϕ0

must be de�ned as:

ϕ0 = (1− wmin
f )

ϕmax − ϕmin

wmax
f − wmin

f

+ ϕmin
(5.5)

With for example, ϕmin = 0, ϕmax = 0.4, wmin
f = 0.4 and wmax

f = 1.6, the following is

obtained:

ϕ0 = (1− 0.4)
0.4− 0

1.6− 0.4
+ 0 = 0.2 (5.6)

Thus, wf(0.2) = 1, and if ϕ < 0.2 then wf(ϕ) < 1 and if ϕ > 0.2 then wf(ϕ) > 1.
The approa
h of Eq. (5.4) is just an example and its implementation 
an be found in the

sour
e 
ode apparentVis
osity.H:

volS
alarField weightFun
tion1

(


onst volS
alarField& varPhi,


onst dimensionedS
alar& varPhiMIN,


onst dimensionedS
alar& varPhiMAX

)

{

dimensionedS
alar WF1_MAX

(

"WF1_MAX",

dimensionSet(0,0,0,0,0,0,0),

s
alar(1.6)

);

dimensionedS
alar WF1_MIN

(

"WF1_MIN",

dimensionSet(0,0,0,0,0,0,0),

s
alar(0.4)

);

dimensionedS
alar slope("slope",dimensionSet(0,0,0,0,0,0,0),s
alar(1));

slope = (WF1_MAX - WF1_MIN)/(varPhiMAX - varPhiMIN);

tmp<volS
alarField> weight

(

slope*mag(varPhi - varPhiMIN) + WF1_MIN

);

return weight();

}

The 
all to Eq. (5.4) is made with the following 
ode available in apparentVis
osity.H:

volS
alarField WF1 = weightFun
tion1(varPhi, varPhiMIN, varPhiMAX);
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The apparent vis
oity of the mixture in homogenous state (i.e. when ϕ = ϕ0 and thus

wf(ϕ) = 1 in Eq. (5.3)) 
an be modelled with the traditional Bingham model [2℄

η0 = µ+
τ0
γ̇

(5.7)

where µ is the plasti
 vis
osity, τ0 is the yield stress and γ̇ is the shear rate given by

[52, 53, 54℄

γ̇ =
√
2 ε̇ : ε̇ (5.8)

The term ε̇ is the rate�of�deformation tensor as given in Se
tion 3.6 on Page 30.

Be
ause of the nonlinearities in the governing equation and be
ause of the inherent

dis
ontinuity in the 
onstitutive equation, a 
omputer simulation of yield stress �uid (i.e.

vis
oplasti
 �uid) is di�
ult. As the yield surfa
e is approa
hed, the presen
e of shear

rate γ̇ in the denominator of Eq. (5.7) (and later in Eqs. (5.9) and (5.10)) makes the

apparent vis
osity η1 unbounded. Furthermore, while simulating the velo
ity �eld U, the

lo
ation of the yield surfa
e is unknown prior to 
al
ulation. To over
ome these di�
ul-

ties, a regularized version of the vis
oplasti
 model has been proposed by Ber
ovier and

Engelman [40℄. It 
onsists of adding a small regularization parameter δ in the denomina-

tor of Eq. (5.7). Ber
ovier and Engelman used su
h approa
h to solve Bingham �ow in a


losed square 
avity subje
t to a body for
e [40℄. This equation has also been su

essfully

used by Taylor and Wilson to simulate 
onduit �ow of an in
ompressible Bingham �uid

[41℄. Furthermore, Burgos et al. used the regularization parameter δ in this manner to

simulate antiplane shear �ow of a Hers
hel�Bulkley �uid [42℄. They also used other types

of regularization approa
hes for 
omparison [42℄. Hen
e, with a proper 
hoi
e of δ, the
regularized version of the vis
oplasti
 model 
an be su

essfully used to simulate both

the yielded region and the unyielded region [40, 41, 42℄. The use of the regularization

parameter δ in this manner has also been used in [3, 43, 44, 45, 46℄ for Bingham, modi�ed

Bingham as well as thixotropi
 vis
oplasti
 material models.

By using the regularization parameter δ (or delta), the 
alls to Eqs. (5.7), (5.3), (5.4)
and (5.1) are made with the following 
ode in apparentVis
osity.H:


onst dimensionedS
alar mu_Bi("mu_Bi", dimPressure*dimTime, s
alar(50.0));


onst dimensionedS
alar tau0_Bi("tau0_Bi", dimPressure, s
alar(10.0));

tmp<volS
alarField> vis
ous_2

(

WF1*mag(alpha1)*

(

mu_Bi + tau0_Bi/(shearRate + delta)

)

+ mag(s
alar(1) - alpha1)*eta2

);

Other models like the Hers
hel�Bulkley model Eq. (5.9) [55℄ 
an also be applied in

Eq. (5.3).

η0 = Kγ̇n−1 +
τ0
γ̇

(5.9)
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In the above equation, the term K is the 
onsisten
y fa
tor and n is the �ow index (also,


onsisten
y index). The 
alls to Eqs. (5.9), (5.3), (5.4) and (5.1) are made with the

following 
ode in apparentVis
osity.H:


onst s
alar n_HB = 1.14;


onst dimensionedS
alar K_HB("K_HB", dimPressure*dimTime, s
alar(40.7));


onst dimensionedS
alar tau0_HB("tau0_HB", dimPressure, s
alar(16.5));


onst dimensionedS
alar tOne("tOne", dimensionSet(0,0,1,0,0,0,0), s
alar(1.0));

tmp<volS
alarField> vis
ous_3

(

WF1*mag(alpha1)*

(

K_HB*pow(shearRate*tOne,n_HB-1.0) + tau0_HB/(shearRate + delta)

)

+ mag(s
alar(1) - alpha1)*eta2

);

Furthermore, in [45℄ the modi�ed Bingham model 
an be a good alternative to either the

standard Bingham model or the Hers
hel�Bulkley model. It is given by

η0 = µ+ c γ̇ +
τ0
γ̇

(5.10)

where c is the so-
alled se
ond order term. The 
alls to Eqs. (5.10), (5.3), (5.4) and (5.1)

are made with the following 
ode in apparentVis
osity.H:


onst dimensionedS
alar mu_mBi("mu_mBi", dimPressure*dimTime, s
alar(82.6));


onst dimensionedS
alar 
_mBi("
_mBi",dimPressure*dimTime*dimTime,s
alar(1.5));


onst dimensionedS
alar tau0_mBi("tau0_mBi", dimPressure, s
alar(23.7));

tmp<volS
alarField> vis
ous_4

(

WF1*mag(alpha1)*

(

mu_mBi + 
_mBi*shearRate + tau0_mBi/(shearRate + delta)

)

+ mag(s
alar(1) - alpha1)*eta2

);

Regardless of the 
hoi
e of material model used (Eqs. (5.7), (5.9) or (5.10), or others) for

the initial/nominal homogeneous mixture, then through Eq. (5.3) the apparent vis
osity η1

an either in
rease or de
rease relative to η0 depending on deviation in solid 
on
entration
ϕ from the initial/normal/nominal value ϕ0.

The approa
h presented in this se
tion is an empiri
al approa
h but 
an be quite

a

urate provided that a good rheometer is available for measuring the material parame-

ters of η0 (whi
hever model is used, Eqs. (5.7), (5.9), (5.10) or others not mentioned) as
well as measuring the sensitivity of the weight fun
tion wf(ϕ) when 
hanging the solid


on
entration ϕ in the mixture (relative to the initial/normal/nominal value ϕ0).
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5.2.2 Ex
ess and Shortage of ϕ Relative to ϕ0

If the aim is to look at the segregation of 
oarse aggregates in the fresh 
on
rete (or in other

types of mixtures), the distin
tion between the matrix and suspended parti
les needs to

be de�ned relative to this pro
ess. More pre
isely, the distin
tion between the two phases

must 
orrelate with the domain of parti
le sizes that are a
tually segregating. For example,

assuming that aggregate parti
les larger than 11mm in diameter are parti
ipating in

segregation, and all materials of smaller size are not, the distin
tion between the matrix

and the suspended parti
les must also re�e
t this division. In this 
ontext, it is important

to note that the referen
e vis
osity η0 in Eq. (5.3) and the use of the weight fun
tion

Eq. (5.4) must be relative to this de�nition. That is, if η0 in Eq. (5.3) represents the

apparent vis
osity of a homogeneous mixture with aggregate range from 0 to 16mm and

the solid 
on
entration of 11− 16mm aggregates in this homogeneous mixture is ϕ = ϕ0

(e.g. with ϕ0 = 0.2), the ex
ess of 11− 16mm aggregates is represented with ϕ > ϕ0 and

the shortage with ϕ < ϕ0, resulting in wf(ϕ) > 1 and wf(ϕ) < 1, respe
tively.

5.3 Theoreti
al Approa
h

Instead of using an empiri
al approa
h like mentioned in Se
tion 5.2, it is also possible

to apply existing theoreti
al approa
h, in whi
h the physi
al parameters depend on the

volume fra
tion ϕ. This is the topi
 of the 
urrent se
tion.

5.3.1 Apparent Vis
osity

An example of apparent vis
osity for the mixture that is expli
itly and theoreti
ally

dependent on the volume fra
tion ϕ is as follows

η1 = µ(ϕ) +
τ0(ϕ)

γ̇
(5.11)

The term µ(ϕ) 
an be 
onsidered as a plasti
 vis
osity that depends on the volume fra
tion
ϕ and likewise the term τ0(ϕ) as the 
orresponding yield stress. In spite of the dependen
y
on ϕ, the above equation 
an be 
onsidered to represent a Bingham model, at least in the

limit when ϕ = constant.
In Eq. (5.11), the plasti
 vis
osity µ(ϕ) 
an for example be modeled as by Krieger and

Dougherty [51℄

µ(ϕ) = µ(0)

(

1− ϕ

ϕm

)−[η]ϕm

(5.12)

while the yield stress 
an depend on the work by Chateau, Ovarlez and Trung [56℄

τ0(ϕ) = τ0(0)

√

(1− ϕ)

(

1− ϕ

ϕm

)−2.5ϕm

(5.13)
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In the above two equations, the terms µ(0) and τ0(0) are the values of µ(ϕ) and τ0(ϕ)
when ϕ = 0. Also, the term ϕm represents the maximum pa
king fra
tion (i.e. dense

pa
king fra
tion). As mentioned before, the term [η] is known as the intrinsi
 vis
osity

and is a measure of the parti
le shape. More pre
isely, the intrinsi
 vis
osity is 2.5 for

spheri
al parti
les and when the parti
les deviate from spheri
al shape, this value is higher

[2℄. For example, for ground gypsum the reported value is [η] = 3.25 [2℄. Nevertheless,

the value of [η] = 2.5 has been used in relation to the fresh 
on
rete [57℄.

Although the intrinsi
 vis
osity [η] and the maximum pa
king fra
tion ϕm 
an vary

between materials, it is reported in [2℄, that the produ
t of the two appears to be a


onstant, i.e. [η]ϕm ≈ 2 (see Table 7.2 in [2℄).

Note that in Eq. (5.13), the intrinsi
 vis
osity [η] is not used [56℄. However, based on

Eq. (5.12), one 
ould suggest that the e�e
t of parti
le shape should be in
luded in this

equation and thus the value �2.5� repla
ed with [η], giving

τ0(ϕ) = τ0(0)

√

(1− ϕ)

(

1− ϕ

ϕm

)−[η]ϕm

. (5.14)

5.3.2 Code Implementation

The 
alls to Eqs. (5.11), (5.12), (5.13)/(5.14) and (5.1), using [η] = 3.25 and ϕm = 0.55,
are made with the following 
ode in apparentVis
osity.H:

// Maximum pa
king fra
tion:


onst dimensionedS
alar varPhiM("varPhiM", dimless, s
alar(0.55)); // 0.75

// Intrinsi
 vis
osity:


onst dimensionedS
alar etaInVi("etaInVi", dimless, s
alar(3.25)); // 2.50

tmp<volS
alarField> vis
ous_5

(

mag(alpha1)*

(

mu*pow(mag(s
alar(1) - varPhi/varPhiM), -etaInVi*varPhiM)

+

tau0*sqrt

(

mag(s
alar(1) - varPhi)*pow(mag(s
alar(1) - varPhi/varPhiM),

-2.5*varPhiM)

// -etaInVi*varPhiM)

)/(shearRate + delta)

)

+ mag(s
alar(1) - alpha1)*eta2

);
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5.3.3 Distin
tion between Matrix and Suspended Parti
les

The fresh 
on
rete 
onsists of parti
les with a broad range of mass, dimension, shape

and surfa
e texture, suspended in a matrix. The distin
tion between matrix (i.e. the


ontinuous phase) and suspended parti
les (i.e. the dispersed phase) is a matter of 
hoi
e,

in 
ontrast to the more traditional suspension of spheres submerged in a Newtonian liquid.

In [3℄, the matrix was de�ned by pure 
onvenien
e to be the 0− 2mm mortar inside the

fresh 
on
rete. Su
h an approa
h is quite 
ommon, for example Mørtsell [58℄ treats the

0−0.125mm �ller modi�ed 
ement paste as matrix, instead of the pre-mentioned mortar.

As mentioned in Se
tion 5.2.2, if the aim is to look at the segregation of parti
les, the

above distin
tion between matrix and suspended parti
les needs to be rede�ned relative

to this pro
ess. More pre
isely, the distin
tion between the two phases must 
orrelate

with the domain of parti
le sizes that are a
tually segregating. Thus, the division must

rather be based on observation rather than by pure 
onvenien
e as given in the above

paragraph.

5.3.4 Maximum Pa
king Fra
tion ϕm

The maximum pa
king fra
tion

25 ϕm used in Eqs. (5.12) and (5.13) must be relative to the

de�nition between matrix and suspended parti
les. For example, using the pre-mentioned

division at 11mm in diameter, one 
annot use the maximum pa
king fra
tion relative to

the whole aggregate range 0 − 16mm used in the mixture. For this whole range, the

maximum pa
king fra
tion has been reported to be up to 0.75 [57℄.

By using the (multimodal) 
onvention done in [59℄, the plasti
 vis
osity and the yield

stress are given by (see also [56, 60, 61℄):

µ(φ) = µi

(

1− φcem

φcem,c

)−2.5φcem,c
(

1− φsand

φsand,c

)−2.5φsand,c
(

1− φgravel

φgravel,c

)−2.5φgravel,c

(5.15)

τ0(φ) = τi

√

√

√

√

1− φcem
(

1− φcem

φcem,c

)2.5φcem,c

√

√

√

√

1− φsand
(

1− φsand

φsand,c

)2.5φsand,c

√

√

√

√

1− φgravel
(

1− φgravel

φgravel,c

)2.5φgravel,c
(5.16)

The terms φcem, φsand and φgravel are the volume fra
tions of the 
ement parti
les in


ement paste, sand parti
les in mortar and gravel parti
les in 
on
rete, respe
tively. What

is important to note is that terms φcem,c, φsand,c and φgravel,c are their respe
tive maximum

pa
king fra
tions. That is, the term φgravel,c is only the maximum pa
king fra
tions of

gravel parti
les, and NOT the maximum pa
king fra
tions of the 
ombined parti
le system


ement, sand and gravel (i.e. not the maximum pa
king fra
tions of the 0 − 16mm used

in the mixture).

If it is only the largest parti
les that parti
ipate in the segregation/settling, the terms

φcem and φsand are 
onstants. With this, the rheologi
al 
ontribution of the smaller parti
le

25

Maximum pa
king fra
tion is also known as dense pa
king fra
tion and eigen�pa
king, among other

terms.
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range (i.e. 0 − 11mm), in
luding the 
ement paste, is �xed as well and represented with

following

µ(0) = µi

(

1− φcem

φcem,c

)−2.5φcem,c
(

1− φsand

φsand,c

)−2.5φsand,c

= constant (5.17)

τ0(0) = τi

√

√

√

√

1− φcem
(

1− φcem

φcem,c

)2.5φcem,c

√

√

√

√

1− φsand
(

1− φsand

φsand,c

)2.5φsand,c
= constant (5.18)

The two above equations represent the vis
ous 
ontribution of the matrix phase. Thus,

the zero in µ(0) and τ0(0) is relative to the volume fra
tion of gravel parti
les φgravel.

Assuming that only the gravel parti
les are parti
ipating in segregation (i.e. φcem and

φsand are 
onstants), then φgravel = ϕ and thus φgravel,c = ϕm. With this, Eqs. (5.15) and

(5.16) (with Eqs. (5.17) and (5.18) in mind), relapse into Eqs. (5.12) and (5.13).

In [62℄ it was proposed that the volume fra
tion ϕ in whi
h the 
on
rete vis
osity

approa
hes in�nity

26


ould be de�ned as the maximum pa
king fra
tion ϕm. Using this

approa
h in [59℄, this value was determined to be φgravel,c = ϕm = 0.645 for 5 − 25mm
gravel. For a more narrow parti
le range like 11 − 16mm, this value is still lower, say

0.55 or even less. Of 
ourse, this depends on the properties of the a
tual aggregates being

used.

In [63℄, an alternative method of determining the maximum pa
king fra
tion ϕm is

given, whi
h is based on vibration of aggregates in a 
ylindri
al 
ontainer, under ap-

pli
ation of pressure. There, it was re
ognized that the determination of this value is

dependent on the method (or pro
ess) whi
h is used. Examples of values presented are

0.628 for 8 − 10mm rounded aggregates, while 0.572 for 
rushed aggregates of the same

size domain.

5.3.5 Chara
teristi
 Parti
le Diameter Da

It should be 
lear that Eqs. (5.12) and (5.13) are valid for monodispersed parti
le size dis-

tribution (i.e. all parti
les of one size). Thus, if the de�nition between the matrix and the

suspended parti
les are as des
ribed in Se
tion 5.3.4, one has to assume that the suspended

parti
les range 11 − 16mm 
onsist of monosized parti
les with a 
hara
teristi
 parti
le

diameter of Da. This value is designated as Da in the 
ase �le transportProperties.

For this example, the diameter Da 
ould represent the mass averaged diameter of the

whole 
olle
tion of gravel parti
les, ranging from 11mm to 16mm. Or a slightly di�erent

approa
h 
ould be used to determine Da. Note that this term is not used in Eqs. (5.12)

and (5.13) and thus in that 
ase, its determination is unimportant. However, this value

is used in the 
al
ulation of settling by gravity VGR
s as shown in Se
tion 6.3 (see for

example Eq. (6.6)) and thus needs to be determined. Furthermore, this value 
an also be

used in the 
al
ulation of the shear (rate) indu
ed parti
le migration VSR
s as explained in

Se
tion 6.4.

26

I.e. when the overall mixture be
omes un�owable and sti�.
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Chapter 6

Settling Velo
ity Vs

6.1 Drift Velo
ity of the Dispersed Phase Vdj

6.1.1 Continuous and Dispersed Phases

To reiterate from the previous 
hapters, the �uid mixture (i.e. phase 1) is a suspension

that 
onsists of a 
ontinuous phase (i.e. a matrix) and a dispersed phase (i.e. suspended

parti
les). Also, the 
ontinuous phase is marked with the subs
ript 
, while the dispersed

phase with d.

In Eq. (4.20), Page 35, the term Vdj represents the drift velo
ity and has already been

treated with Eq. (2.27) on Page 21, and is reprodu
ed below:

Vdj = −βcVr = βc (Vd −Vc) (6.1)

The term Vr = Vc − Vd is the relative velo
ity between phases, given by Eq. (2.15)

on Page 20. The drift velo
ity Vdj is the velo
ity of the dispersed phase relative to the

mixture 
enter of volume and is needed to allow slip between phases (see Se
tion 2.3.1).

This is required to allow for the mixture (e.g. fresh 
on
rete) to segregate, either by

gravitational settling and/or by other means, like settling by the shear (rate) indu
ed

parti
le migration.

Below are two examples given, to better understand the physi
al meaning of the drift

velo
ity Vdj, at least relative to the segregation of high vis
ous mixture like the fresh


on
rete: Fig. 6.1 shows two di�erent 
ases of suspensions, one is diluted (a) and the

other is 
on
entrated (b). In both 
ases, the parti
les and liquid together represents a


losed system (no mass is �owing in or out of the system). The settlement of the parti
le is

represented with the velo
ity of the dispersed phase, namelyVd. The observed settlement

is also represented with the settling velo
ity Vs (that is, Vd = Vs).

It should be 
lear that the settling/segregation in Fig. 6.1 may be indu
ed by gravity

(i.e. by di�eren
e in densities), and/or by shear (rate) indu
ed parti
le migration, and/or

by other means. The relevant settling phenomenon depends of 
ourse on the mixture and

the overall �ow system that is being investigated.
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Vd

Vc Vc Vc Vc

Vc Vc

VdVd Vd

(a) (b)

Figure 6.1: Two di�erent 
ases of suspensions, one is diluted (a) and the other is 
on
en-

trated (b).

6.1.2 Example 1: Diluted Case

Fig. 6.1a shows an example of settling of a single parti
le (i.e. of the dispersed phase) in a

large liquid medium (the 
ontinuous phase). By the 
onservation of volume in this 
losed

system, the upward velo
ity of the 
ontinuous phase Vc is initiated by the downward

movement of the single parti
le Vd. That is, as the parti
le moves downward, an equal

volume amount of 
ontinuous phase has to move upward. Now, due to the mu
h larger

quantity of the 
ontinuous phase, i.e. βc = 1−βd ≈ 1, and thus a mu
h larger (horizontal)
area that the liquid 
an bypass the parti
le, the velo
ity of the 
ontinuous phase is more

or less zero Vc ≈ 0. Thus by Eq. (6.1), the following is obtained:

Vdj = βc (Vd −Vc) ≈ 1.0 (Vd − 0) = Vd (Fig. 6.1a) (6.2)

That is, for the above 
ase, the drift velo
ity Vdj is more or less the same as the velo
ity

of the dispersed phase Vd. Moreover, the latter velo
ity is the same as the observed

settlement, whi
h is represented with the settling velo
ity Vs (i.e. here, Vd = Vs).

6.1.3 Example 2: Con
entrated Case

In Fig. 6.1b, the velo
ity of the 
ontinuous phase Vc is initiated by the downward move-

ment of all the parti
les. Due to a mu
h larger quantity of parti
les moving downward, the

resulting upward velo
ity of the 
ontinuous phase Vc is now mu
h larger relative to the

previous example. Assuming that the volume fra
tion of the dispersed phase is βd = 0.5
(i.e. half of the system total volume are solids), then by volume 
onservation prin
iple

(i.e. the system is 
losed and 
onserved), the upward velo
ity of the the 
ontinuous phase

would be similar to that of the parti
le phase, meaning Vc ≈ −Vd. Thus by Eq. (6.1),

the following is obtained:

Vdj = βc (Vd −Vc) ≈ 0.5 (Vd − (−Vd)) = Vd (Fig. 6.1b) (6.3)
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That is, for the above 
ase, the drift velo
ity Vdj is more or less the same as the velo
ity

of the dispersed phase Vd. As before, the latter velo
ity is the same as the observed

settlement, whi
h is represented with the settling velo
ity Vs (i.e. here, Vd = Vs).

6.1.4 Observed Settling Velo
ity Vs

From the two above examples, it 
an be suggested that the drift velo
ity Vdj is similar

or equal to the observed settling velo
ity Vs, represented with Eq. (6.4). This approa
h

is for example used in [7℄, Se
tion 2.4.

Vdj ≈ Vs (6.4)

It should be noted that a small dissimilarity between the onset Vdj (into the sour
e 
ode)

and the observed Vs (from the simulation result) was registered in Se
tion 1.5 (Page 8),

giving 5% time di�eren
e from the e�e
t of these two velo
ities.

6.2 Overall Drift Velo
ity

In order to 
al
ulate the mixture �ow with settling/segregation (i.e. with slip between

phases), the overall velo
ity of the dispersed phase d relative to the mixture 
enter of

volume needs to be 
al
ulated, given by

Vdj =
∑

q

V
q
dj = VGR

dj +VSR
dj + . . . (6.5)

where VGR
dj is the slip by gravity (Se
tion 6.3) and VSR

dj is the slip by shear (rate) indu
ed

parti
le migration (Se
tion 6.4). Other physi
al pro
esses 
an be added into Eq. (6.5) as

indi
ated with the dots. As dis
ussed in Se
tion 6.1 and shown with Eq. (6.4), the drift

velo
ity Vdj is 
onsidered to be the observed settling velo
ity, here designated with Vs

(see also [7℄). This is assumed to apply regardless of the physi
al pro
ess responsible for

slip between phases, i.e. VGR
dj = VGR

s and VSR
dj = VSR

s .

6.3 Settling by Gravity

6.3.1 Theory

For a single parti
le in an in�nite medium of Newtonian �uid with the vis
osity of µN, it is

relatively straightforward to 
al
ulate the settling velo
ity (see [7, 13℄). For a single spher-

i
al parti
le at low Reynolds number, through the equilibrium between weight, buoyan
y

and drag for
e, the settling velo
ity is 
al
ulated as (see for example Se
tion 2.3.1 in [13℄

or Se
tion 2.4.1 in [7℄)

VGR
s =

D2
a g (ρd − ρc)

18µN

(6.6)
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To reiterate, the term µN is the Newtonian vis
osity, g is gravity, ρc is the density of the


ontinuous phase, ρd is the density of the dispersed phase and Da is the parti
le diameter.

For a single parti
le submerged in an in�nite medium of Bingham vis
oplasti
 �uid

with the apparent vis
osity of η1 = µ+τ0/γ̇, some suggestions of settling velo
ityVGR
s has

been proposed, based on Eq. (6.6). One suggestion 
onsists of repla
ing the Newtonian

vis
osity µN with the plasti
 vis
osity µ of the Bingham �uid [13℄. Another approa
h


onsists of using the apparent vis
osity η1 of the Bingham �uid [13, 64, 65℄. The third

approa
h is repla
ing µN with a so-
alled tangential vis
osity of the Hers
hel�Bulkley

�uid, given by µtan = nK γ̇n−1
, where K is the 
onsisten
y fa
tor and n the 
onsisten
y

index (also, �ow index) [13℄.

In [57℄, the Newtonian vis
osity µN in Eq. (6.6) is repla
ed with the lo
al surrounding

vis
osity of the suspending �uid, modeled as µs = η1/λ where λ ≥ 1. As before, η1 is

the mixture

27

apparent vis
osity. When λ equals 1, the surrounding �uid has the same

behavior as the tested mixture. As the former is more �uid relative to the latter, λ should

be higher than 1 [57℄. With this approa
h, Eq. (6.6) is transformed into the following

VGR
s =

D2
a g (ρd − ρc)

18 (η1/λ)
(6.7)

It should be noted that for hindered settling where the �ow �eld around any one parti
le

is a�e
ted by its neighbors, in
luding parti
le-parti
le 
ollisions, the settling velo
ity 
an

also be depended on the solid 
on
entration ϕ [7, 66℄. Thus, Eq. (6.7) may be in
omplete.

In the solver vvpfFoam, a dependen
y on ϕ is added by slowDown2, whi
h in its 
urrent

form avoids the 
ontinuous �lling of a 
ell with ϕ if it has rea
hed its designated max


apa
ity ϕMAX
(for example, equal to 0.4).

6.3.2 Code Implementation

The drift velo
ity VGR
dj is designated with VdjGR. Its �ux is 
al
ulated as φGR

dj = VGR
dj · S,

or phiVdjGR = fv
::interpolate(VdjGR) & mesh.Sf();. The term S is the fa
e area

ve
tor of a 
ell and φ represents the 
ell fa
e �ux [34℄ (see also Se
tion 4.9). Settling by

gravity is implemented in gravitySegregation.H and is as follows (with λ = 1.45):

#in
lude "
orre
tVis
osity.H"

tmp<volVe
torField> VsGR =

mag(alpha1)*(pow(Da, 2.0)*g*(rhoD - rhoC))/(18.0*(etaEff/1.45));

#ifdef GRAVITY_SEGREGATION

VdjGR =

slowDown2

(

alphaD, // alphaD, or betaD, depending on user preferen
e!

27

For example, by Eq. (5.11), Page 54. Note that in a

ordan
e with Eq. (5.1), when ex
lusively

treating the mixture, meaning α1 = 1, then η = η1. In the sour
e 
ode, η is represented with etaEff.
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alphaDMIN,

alphaDMAX

)*(1.0*VsGR);

#else

VdjGR = zeroVelo
ity;

#endif

forAll(alpha1.internalField(), 
elli)

{

if

(

alpha1[
elli℄ > lowerCrit.value()

&& alpha1[
elli℄ < upperCrit.value()

&& alphaD[
elli℄ > 
riteriaD.value()

)

{

VdjGR[
elli℄ = (1.0 - alpha1[
elli℄)*0.2100*interfa
eNormal[
elli℄;

}

else if (alpha1[
elli℄ <= lowerCrit.value())

{

VdjGR[
elli℄ = (1.0 - alpha1[
elli℄)*0.0306*g.value();

}

}

forAll(mesh.boundary(), pat
hi)

{

VdjGR.boundaryField()[pat
hi℄ == ve
tor::zero;

forAll(alpha1.boundaryField()[pat
hi℄, fa
ei)

{

if (alpha1.boundaryField()[pat
hi℄[fa
ei℄ < lowerCrit.value())

{

VdjGR.boundaryField()[pat
hi℄[fa
ei℄ =

(1.0 - alpha1.boundaryField()[pat
hi℄[fa
ei℄)*0.0306*g.value();

}

}

}

VdjGR.
orre
tBoundaryConditions();

phiVdjGR = fv
::interpolate(VdjGR) & mesh.Sf();
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6.4 Settling by Shear Indu
ed Parti
le Migration

6.4.1 Theory

In this work, the term shear indu
ed parti
le migration, will also have the designation

shear rate indu
ed parti
le migration, due to the physi
al pro
ess it originates from (see

Se
tion 10.1 in [3℄).

Often, the equation for the parti
le �ux is given by [14, 67℄

∂ϕ

∂t
+∇ · (ϕU) = −∇ ·Nt (6.8)

The above equation does not a

ount for di�eren
e in density between the 
ontinuous

phase and the dispersed phase and thus is only 
orre
t for neutrally buoyant suspension,

meaning ρc = ρd = ρ1. The term Nt represents the parti
le �ux of the dispersed phase

with solid 
on
entration of ϕ and is given by [68℄ (see also [14, 67℄)

Nt = Nc +Nη = −Kca
2ϕ∇(γ̇ϕ)−Kηa

2γ̇ϕ2∇(ln η1) (6.9)

where the terms Kc = 0.41 and Kη = 0.62 are empiri
al �tted parameters [14, 67, 68℄.

The term a is the radius of the (
hara
teristi
) parti
le, here equal to Da/2 (see also

Se
tion 5.3.5, Page 57, about the parameter Da).

The parti
le �ux Nt a

ounts for both shear rate indu
ed parti
le migration as well as


ompensations by the vis
osity gradient indu
ed e�e
ts. The latter phenomenon, namely

Nη = −Kηa
2γ̇ϕ2∇(ln η1), a

ounts for the tenden
y of parti
les to migrate away from the

high vis
ous values η1 to lower values of η1 [69℄. More pre
isely, as the mixture gets more

�uid, the mobility of parti
les is higher [69℄.

For Eq. (4.20), Page 35, one 
an repla
e the term αd with ϕ, 
.f. the dis
ussion in the

last paragraph of Se
tion 5.1. In this 
ase, the term Ur ξd (1− α1) 
an be ex
luded sin
e

only the mixture (i.e. phase 1) is being 
onsidered. Furthermore, sin
e only settling by

shear indu
ed parti
le migration is addressed, then Vdj = VSR
dj . Finally, with a neutrally

buoyant suspension ρc = ρd = ρ1 (as is assumed in Eq. (6.8)), Eq. (4.20) is transformed

into the following

∂ϕ

∂t
+∇ · (ϕU) = −∇ · (ϕVSR

dj ) (6.10)

Comparing Eqs (6.8) and (6.10), one obtains Nt = ϕVSR
dj , meaning

VSR
dj =

Nt

ϕ
= −Kca

2∇(γ̇ϕ)−Kηa
2γ̇ϕ∇(ln η1) (6.11)

With the assistan
e from the indi
ial notation and the summation 
onvention [20, 21, 39℄,

as well as using the 
hain rule, it is possible to 
al
ulate ln η1 further

∇(ln η1) = iq
∂(ln η1)

∂xq

= iq
∂(ln η1)

∂η1

∂η1
∂xq

=
∂(ln η1)

∂η1
∇η1 =

∇η1
η1

(6.12)

Innovation Center I
eland

ICI Rheo
enter

Report No. NMI 20-01

Page 63



6.4. Settling by Shear Indu
ed Parti
le Migration

IRF (RANNIS)

Grant No. 163382-05

Thus, with the above result and a = Da/2, Eq. (6.11) 
an be rewritten as

VSR
dj = −Kc

(

Da

2

)2

∇(γ̇ϕ)−Kη

(

Da

2

)2

γ̇ϕ
∇η1
η1

(6.13)

or equally

VSR
dj = −D2

a

4

(

Kc∇(γ̇ϕ) +Kηγ̇ϕ
∇η1
η1

)

(6.14)

It should be noted that the parameters Kc and Kη may not be 
onstants, but a
tually

depend on ϕ [70℄. Furthermore, Eq. (6.9) is generated from experimentation of small inert

neutrally buoyant parti
les with almost mono-sized parti
le size distribution [14℄. Thus,

some modi�
ations of the above might be ne
essary to a

ommodate a di�erent mixture

type.

In the limited 
ase of ∇η1 ≈ 0 and ϕ ≈ constant, then Eq. (6.14) be
omes

VSR
dj ≈ −

(

D2
a

4
Kcϕ

)

∇γ̇ = −k∇γ̇ (6.15)

For example, withDa = 13mm and ϕ ≈ 0.2, then k = (0.0132/4)·0.41·0.2 = 0.35·10−5m2
.

Eq. (6.15) has been used in relation to self 
ompa
ting 
on
rete, with k = 1.4 · 10−5m2

[71℄. See also Se
tion 10.1 in [3℄ about the term −k∇γ̇ and its physi
al signi�
an
e.

6.4.2 Code Implementation

The drift velo
ity VSR
dj is designated with VdjSR. Its �ux is 
al
ulated as φSR

dj = VSR
dj · S,

or phiVdjGR = fv
::interpolate(VdjSR) & mesh.Sf();. As before, the term S is the

fa
e area ve
tor. Settling by the shear rate indu
ed parti
le migration is implemented in

parti
leMigration.H and is as follows (with Eq. (6.15) 
ommented out):

#in
lude "
orre
tVis
osity.H"

volVe
torField gradShearRate(fv
::grad(shearRateAlpha1));

// volVe
torField gradShearRate(fv
::grad(shearRate));

// ---

// 
onst dimensionedS
alar Ksr("Ksr", dimensionSet(0,2,0,0,0,0,0), s
alar(0.8e-5));

// tmp<volVe
torField> VsSR = -mag(alpha1)*Ksr*gradShearRate;

// ---


onst dimensionedS
alar K
("K
", dimless, s
alar(0.41));


onst dimensionedS
alar Keta("Keta", dimless, s
alar(0.62));


onst dimensionedS
alar a = Da/2.0;

tmp<volVe
torField> VsSR =

-mag(alpha1)*
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(

// K
*pow(a, 2.0)*fv
::grad(shearRate*alphaD)

// + Keta*pow(a, 2.0)*shearRate*alphaD*(gradEtaEff/(etaEff + deltaEta))

K
*pow(a, 2.0)*fv
::grad(shearRateAlpha1*alphaD)

+ Keta*pow(a, 2.0)*shearRateAlpha1*alphaD

* (gradEtaEff/(etaEff + deltaEta))

);

#ifdef PARTICLE_MIGRATION

VdjSR =

slowDown4

(

alphaD, // alphaD, or betaD, depending on user preferen
e!

alphaDMIN,

alphaDMAX

)*(1.0*VsSR);

#else

VdjSR = zeroVelo
ity;

#endif

forAll(alpha1.internalField(), 
elli)

{

if

(

alpha1[
elli℄ > lowerCrit.value()

&& alpha1[
elli℄ < upperCrit.value()

&& alphaD[
elli℄ > 
riteriaD.value()

)

{

VdjSR[
elli℄ = (1.0 - alpha1[
elli℄)*0.2100*interfa
eNormal[
elli℄;

}

else if (alpha1[
elli℄ <= lowerCrit.value())

{

VdjSR[
elli℄ = (1.0 - alpha1[
elli℄)*0.0306*g.value();

}

}

forAll(mesh.boundary(), pat
hi)

{

VdjSR.boundaryField()[pat
hi℄ == ve
tor::zero;

/*

forAll(alpha1.boundaryField()[pat
hi℄, fa
ei)

{

if (alpha1.boundaryField()[pat
hi℄[fa
ei℄ < lowerCrit.value())

{

VdjSR.boundaryField()[pat
hi℄[fa
ei℄ =

(1.0 - alpha1.boundaryField()[pat
hi℄[fa
ei℄)*0.0306*g.value();

}
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}

*/

}

VdjSR.
orre
tBoundaryConditions();

phiVdjSR = fv
::interpolate(VdjSR) & mesh.Sf();
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Chapter 7

Summary

A multiphase transient simulator, named vvpfFoam, has been developed that models the

dynami
s of multiple �uid phases of a mixture, for example during 
asting. The develop-

ment was realized within the OpenFOAM framework and the starting template was the

interFoam solver. One of the aims with this solver is to simulate operational problems

related to un
ertainties in 
asting predi
tions of fresh 
on
rete. This in
ludes the e�e
t

of the settlement of aggregates by gravity (i.e. segregation) as well as by shear (rate) in-

du
ed parti
le migration. Although the vvpfFoam solver was designed with fresh 
on
rete

in mind, it 
an be used with other high vis
ous mixtures as well, e.g. aluminum parti
les

submerged in oil. Also, other types of 
ement-based material 
an be analyzed with this

solver, like the fresh mortar. For the most important analysis of this proje
t, simulations

were performed on super
omputers at the I
elandi
 High Performan
e Computer Center

(ihp
.is). The analysis in
lude explanations of how reinfor
ement shadows 
an form on

a 
on
rete surfa
e after 
asting a wall se
tion and how the e�e
t of segregation 
an be

moved further downstream by adve
tion.

The solver has in
orporated two theories:

• The �rst theory is the volume of �uid approa
h (VOF), whi
h is needed to divide

the system between the atmospheri
 air and the �uid mixture. The �uids do not

generally intermix (immis
ible) and thus usually have a 
lear boundary between

them.

• The se
ond theory is the implementation of �eld equation to be able to 
al
ulate

settling/segregation within the �uid mixture, by the e�e
t of gravity, by the shear

(rate) indu
ed parti
le migration and/or by other means. The �uid phases are

usually in an intermixed stated (mis
ible). The approa
h used is the Drift Flux

Model (DFM).

In addition to the issues mentioned in Se
tion 1.7, there are most 
ertainly other


urrently unknown problems with this solver. However, as the solver is open and li
ensed

under the GNU General Publi
 Li
ense (see Appendix C), as applies for OpenFOAM, the
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user has the opportunity to investigate, test and repair it. The user 
an modify the 
ode,

add new 
apabilities and otherwise enhan
e (or downgrade) it to the spe
i�
ation needed.
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Appendix A

Sour
e Code Overview

This is the overview of the sour
e 
ode �les of the solver vvpfFoam. At the time of writing,

it 
onsists of 27 �les. Few of these are more or less un
hanged from the template solver

(namely the interFoam solver).

• vvpfFoam.C: The main �le, holding everything together.

• alpha1CourantNo.H: Courant number 
al
ulation.

• alpha1Eqn.H: Eq. (4.23) with ρ1 = constant (Page 36).

• alpha1EqnRho.H: Eq. (4.23) with ρ1 6= constant. See also Fig. 4.2, Page 37.

• alpha1EqnSubCy
le.H: Iteration of Eq. (4.23).

• alpha1Interfa
e.H: Interfa
e treatment at boundary between α1 and α2.

• alphaDCourantNo.H: Courant number 
al
ulation.

• alphaDEqn.H: Eq. (4.20), Page 35.

• alphaDEqnSubCy
le.H: Iteration of Eq. (4.20).

• apparentVis
osity.H: Chapter 5, Page 49.

• 
omprsblContErrs.H: Monitoring of ∇ ·U. To a
tive this, ERROR_ANALYSIS must

be de�nded in ma
roDefinitions.H.

• 
orre
tPhi.H: Un
hanged from the original interFoam solver.

• 
orre
tVis
osity.H: Call to η1 (see apparentVis
osity.H).

• 
reateFields.H: Creation of the main �eld variables.

• 
reateFun
tions.H: Various fun
tions needed to 
ontrol the drift velo
ity at bound-

ary as well as in the bulk. See gravitySegregation.H and parti
leMigration.H.
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• densityContErrs.H: Monitoring of ∂ρ/∂t +∇ · (ρU) (see Eq. 4.46, Page 42). To
a
tive this, ERROR_ANALYSIS must be de�nded in ma
roDefinitions.H.

• driftVelo
ity.H: Se
tion 6.2, Page 60.

• enableFieldControl.H: Various 
riteria imposed on some of the �eld variables.

Also, 
al
ulation of Uin = U + ω × x if SINGLE_REFERENCE_FRAME is de�ned in

ma
roDefinitions.H (see the text below Eq. (4.43) on Page 41).

• gravitySegregation.H: Se
tion 6.3, Page 60.

• ma
roDefinitions.H: Conditional 
ompilation with ma
ro de�nitions.

• parti
leMigration.H: Se
tion 6.4, Page 63.

• pEqn.H: Cal
ulation of the pressure p_rgh either by Eq. (4.50) or by Eq. (4.51),

depending on if USE_PRESSURE_RESIDUE is de�nded in ma
roDefinitions.H or not.

Expli
it velo
ity 
orre
tion is also done in this �le, 
.f. Se
tion 4.9.2.

• pEqnResidueErrs.H: Monitoring of ∇ ·R (see Eq. 4.52, Page 43). To a
tive this,

ERROR_ANALYSIS must be de�nded in ma
roDefinitions.H.

• rho1MaxMinFields.H: De�ning max and min of ρ1 as a �eld variable and setting

the 
orresponding value.

• setDeltaT.H: Adjustment of the time step ∆t, based on alpha1CourantNo.H and

alphaDCourantNo.H.

• transportProperties.H: Reads the 
ase �le ./
onstant/transportProperties.

Note that this �le is relative to return vis
ous_5() in apparentVis
osity.H.

For most other rheologi
al models de�ned in apparentVis
osity.H, the material

parameters are set in the sour
e �le, and thus a re
ompilation is needed for su
h

usage. A di�erent return vis
ous_X() must also be set. The user 
an rewrite

transportProperties.H for the parti
ular rheologi
al model needed.

• UEqn.H: Setup of H(U) either by Eq. (4.42) or by Eq (4.43), depending on if

SINGLE_REFERENCE_FRAME is de�ned in ma
roDefinitions.H or not. If the 
ase

�le ./system/fvSolution has momentumPredi
tor yes, Eq. (4.42)/(4.43) will be

solved in order to generate a �rst guess for the velo
ity U. Usually, the 
ondition

is set as momentumPredi
tor no.
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Appendix B

Compilation

B.1 ./Make/options

The solver 
an be 
ompiled within OpenFOAM 2.2.0 to 2.2.2. When 
ompiling the solver

vvpfFoam in OpenFOAM 2.2.0, the �le ./Make/options must 
onsist of the following:

EXE_INC = \

-I$(LIB_SRC)/transportModels/twoPhaseInterfa
eProperties/ [
ont. next line℄

alphaConta
tAngle/alphaConta
tAngle \

-I$(LIB_SRC)/transportModels \

-I$(LIB_SRC)/transportModels/in
ompressible/lnIn
lude \

-I$(LIB_SRC)/transportModels/interfa
eProperties/lnIn
lude \

-I$(LIB_SRC)/finiteVolume/lnIn
lude

EXE_LIBS = \

-ltwoPhaseInterfa
eProperties \

-lfiniteVolume

However, when 
ompiling the solver in OpenFOAM 2.2.1 or OpenFOAM 2.2.2, the �le

./Make/options must 
onsist of:

EXE_INC = \

-I$(LIB_SRC)/transportModels/twoPhaseProperties/ [
ont. next line℄

alphaConta
tAngle/alphaConta
tAngle \

-I$(LIB_SRC)/transportModels \

-I$(LIB_SRC)/transportModels/in
ompressible/lnIn
lude \

-I$(LIB_SRC)/transportModels/interfa
eProperties/lnIn
lude \

-I$(LIB_SRC)/finiteVolume/lnIn
lude

EXE_LIBS = \

-ltwoPhaseProperties \

-lfiniteVolume

Examples of ea
h setup is present in ./Make/options by the names options_OF220.txt

and options_OF221_OF222.txt, respe
tevly.
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B.2 Fedora Linux

The following 
ompile instru
tion has been tested on Fedora 18. The out
ome has also

been tarballed and moved to super
omputers

28

using CentOS 7.x, without issues.

When 
ompiling OpenFOAM 2.2.0 to 2.2.2, the steps are as follows:

(1) In $HOME/.bashr
, add

alias of220='sour
e $HOME/OpenFOAM/OpenFOAM-2.2.0/et
/bashr
 && PS1="[2.2.0℄[\W℄ " '

alias of221='sour
e $HOME/OpenFOAM/OpenFOAM-2.2.0/et
/bashr
 && PS1="[2.2.1℄[\W℄ " '

alias of222='sour
e $HOME/OpenFOAM/OpenFOAM-2.2.0/et
/bashr
 && PS1="[2.2.2℄[\W℄ " '

(2) New terminal + of220

in $WM_THIRD_PARTY_DIR

tar xzf 
make-2.8.3.tar.gz

./makeCmake

(3) New terminal + of220

in $WM_THIRD_PARTY_DIR

./makeParaView -qmake $(whi
h qmake-qt4)

(4) New terminal + of220

in $WM_THIRD_PARTY_DIR

./Allwmake

(5) New terminal + of220

foam

export WM_NCOMPPROCS=$(
at /pro
/
puinfo | grep pro
essor | w
 -l)

./Allwmake 2>&1 | tee wmake_log_file.txt

When �nished, make sure that openmpi exists in the third-party-dir:

ls $WM_THIRD_PARTY_DIR/platforms/linux64G

/openmpi-1.6.3

B.3 Ubuntu Linux

OpenFOAM 2.2.2 
an be 
ompiled on Ubuntu 18.04, by following the steps provided in

https://openfoamwiki.net/index.php/Installation/Linux/OpenFOAM-2.2.2/Ubuntu

The approa
h has been tested on a fresh Ubuntu 18.04 (Gnome) installation without

problems. Also, the solver vvpfFoam 
ompiles and run without issues. On this note, the

latest part of the solver development was done on 
omputer running Xubuntu 18.04, using

OpenFOAM binaries generated on a Fedora Linux workstation.

28

Owned and hosted by the I
elandi
 High Performan
e Computing Centre (ihp
.is).
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Appendix C

GNU General Publi
 Li
ense

GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, In
. <http://fsf.org/> Everyone is permitted to 
opy and distribute

verbatim 
opies of this li
ense do
ument, but 
hanging it is not allowed.

Preamble

The GNU General Publi
 Li
ense is a free, 
opyleft li
ense for software and other kinds of works.

The li
enses for most software and other pra
ti
al works are designed to take away your freedom to share and 
hange

the works. By 
ontrast, the GNU General Publi
 Li
ense is intended to guarantee your freedom to share and 
hange all

versions of a program�to make sure it remains free software for all its users. We, the Free Software Foundation, use the

GNU General Publi
 Li
ense for most of our software; it applies also to any other work released this way by its authors.

You 
an apply it to your programs, too.

When we speak of free software, we are referring to freedom, not pri
e. Our General Publi
 Li
enses are designed to

make sure that you have the freedom to distribute 
opies of free software (and 
harge for them if you wish), that you re
eive

sour
e 
ode or 
an get it if you want it, that you 
an 
hange the software or use pie
es of it in new free programs, and that

you know you 
an do these things.

To prote
t your rights, we need to prevent others from denying you these rights or asking you to surrender the rights.

Therefore, you have 
ertain responsibilities if you distribute 
opies of the software, or if you modify it: responsibilities to

respe
t the freedom of others.

For example, if you distribute 
opies of su
h a program, whether gratis or for a fee, you must pass on to the re
ipients

the same freedoms that you re
eived. You must make sure that they, too, re
eive or 
an get the sour
e 
ode. And you must

show them these terms so they know their rights.

Developers that use the GNU GPL prote
t your rights with two steps: (1) assert 
opyright on the software, and (2)

o�er you this Li
ense giving you legal permission to 
opy, distribute and/or modify it.

For the developers' and authors' prote
tion, the GPL 
learly explains that there is no warranty for this free software.

For both users' and authors' sake, the GPL requires that modi�ed versions be marked as 
hanged, so that their problems

will not be attributed erroneously to authors of previous versions.

Some devi
es are designed to deny users a

ess to install or run modi�ed versions of the software inside them, although

the manufa
turer 
an do so. This is fundamentally in
ompatible with the aim of prote
ting users' freedom to 
hange the

software. The systemati
 pattern of su
h abuse o

urs in the area of produ
ts for individuals to use, whi
h is pre
isely where

it is most una

eptable. Therefore, we have designed this version of the GPL to prohibit the pra
ti
e for those produ
ts.

If su
h problems arise substantially in other domains, we stand ready to extend this provision to those domains in future

versions of the GPL, as needed to prote
t the freedom of users.

Finally, every program is threatened 
onstantly by software patents. States should not allow patents to restri
t

development and use of software on general-purpose 
omputers, but in those that do, we wish to avoid the spe
ial danger

that patents applied to a free program 
ould make it e�e
tively proprietary. To prevent this, the GPL assures that patents


annot be used to render the program non-free.

The pre
ise terms and 
onditions for 
opying, distribution and modi�
ation follow.

TERMS AND CONDITIONS

0. De�nitions. "This Li
ense" refers to version 3 of the GNU General Publi
 Li
ense. "Copyright" also means


opyright-like laws that apply to other kinds of works, su
h as semi
ondu
tor masks.

"The Program" refers to any 
opyrightable work li
ensed under this Li
ense. Ea
h li
ensee is addressed as "you".

"Li
ensees" and "re
ipients" may be individuals or organizations.

To "modify" a work means to 
opy from or adapt all or part of the work in a fashion requiring 
opyright permission,

other than the making of an exa
t 
opy. The resulting work is 
alled a "modi�ed version" of the earlier work or a work

"based on" the earlier work.

A "
overed work" means either the unmodi�ed Program or a work based on the Program.
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To "propagate" a work means to do anything with it that, without permission, would make you dire
tly or se
ondarily

liable for infringement under appli
able 
opyright law, ex
ept exe
uting it on a 
omputer or modifying a private 
opy.

Propagation in
ludes 
opying, distribution (with or without modi�
ation), making available to the publi
, and in some


ountries other a
tivities as well.

To "
onvey" a work means any kind of propagation that enables other parties to make or re
eive 
opies. Mere intera
tion

with a user through a 
omputer network, with no transfer of a 
opy, is not 
onveying.

An intera
tive user interfa
e displays "Appropriate Legal Noti
es" to the extent that it in
ludes a 
onvenient and

prominently visible feature that (1) displays an appropriate 
opyright noti
e, and (2) tells the user that there is no warranty

for the work (ex
ept to the extent that warranties are provided), that li
ensees may 
onvey the work under this Li
ense,

and how to view a 
opy of this Li
ense. If the interfa
e presents a list of user 
ommands or options, su
h as a menu, a

prominent item in the list meets this 
riterion.

1. Sour
e Code. The "sour
e 
ode" for a work means the preferred form of the work for making modi�
ations to it.

"Obje
t 
ode" means any non-sour
e form of a work.

A "Standard Interfa
e" means an interfa
e that either is an o�
ial standard de�ned by a re
ognized standards body,

or, in the 
ase of interfa
es spe
i�ed for a parti
ular programming language, one that is widely used among developers

working in that language.

The "System Libraries" of an exe
utable work in
lude anything, other than the work as a whole, that (a) is in
luded

in the normal form of pa
kaging a Major Component, but whi
h is not part of that Major Component, and (b) serves only

to enable use of the work with that Major Component, or to implement a Standard Interfa
e for whi
h an implementation

is available to the publi
 in sour
e 
ode form. A "Major Component", in this 
ontext, means a major essential 
omponent

(kernel, window system, and so on) of the spe
i�
 operating system (if any) on whi
h the exe
utable work runs, or a 
ompiler

used to produ
e the work, or an obje
t 
ode interpreter used to run it.

The "Corresponding Sour
e" for a work in obje
t 
ode form means all the sour
e 
ode needed to generate, install, and

(for an exe
utable work) run the obje
t 
ode and to modify the work, in
luding s
ripts to 
ontrol those a
tivities. However,

it does not in
lude the work's System Libraries, or general-purpose tools or generally available free programs whi
h are used

unmodi�ed in performing those a
tivities but whi
h are not part of the work. For example, Corresponding Sour
e in
ludes

interfa
e de�nition �les asso
iated with sour
e �les for the work, and the sour
e 
ode for shared libraries and dynami
ally

linked subprograms that the work is spe
i�
ally designed to require, su
h as by intimate data 
ommuni
ation or 
ontrol

�ow between those subprograms and other parts of the work.

The Corresponding Sour
e need not in
lude anything that users 
an regenerate automati
ally from other parts of the

Corresponding Sour
e.

The Corresponding Sour
e for a work in sour
e 
ode form is that same work.

2. Basi
 Permissions. All rights granted under this Li
ense are granted for the term of 
opyright on the Program,

and are irrevo
able provided the stated 
onditions are met. This Li
ense expli
itly a�rms your unlimited permission to

run the unmodi�ed Program. The output from running a 
overed work is 
overed by this Li
ense only if the output, given

its 
ontent, 
onstitutes a 
overed work. This Li
ense a
knowledges your rights of fair use or other equivalent, as provided

by 
opyright law.

You may make, run and propagate 
overed works that you do not 
onvey, without 
onditions so long as your li
ense

otherwise remains in for
e. You may 
onvey 
overed works to others for the sole purpose of having them make modi�
ations

ex
lusively for you, or provide you with fa
ilities for running those works, provided that you 
omply with the terms of this

Li
ense in 
onveying all material for whi
h you do not 
ontrol 
opyright. Those thus making or running the 
overed works

for you must do so ex
lusively on your behalf, under your dire
tion and 
ontrol, on terms that prohibit them from making

any 
opies of your 
opyrighted material outside their relationship with you.

Conveying under any other 
ir
umstan
es is permitted solely under the 
onditions stated below. Subli
ensing is not

allowed; se
tion 10 makes it unne
essary.

3. Prote
ting Users' Legal Rights From Anti-Cir
umvention Law. No 
overed work shall be deemed part of

an e�e
tive te
hnologi
al measure under any appli
able law ful�lling obligations under arti
le 11 of the WIPO 
opyright

treaty adopted on 20 De
ember 1996, or similar laws prohibiting or restri
ting 
ir
umvention of su
h measures.

When you 
onvey a 
overed work, you waive any legal power to forbid 
ir
umvention of te
hnologi
al measures to the

extent su
h 
ir
umvention is e�e
ted by exer
ising rights under this Li
ense with respe
t to the 
overed work, and you

dis
laim any intention to limit operation or modi�
ation of the work as a means of enfor
ing, against the work's users, your

or third parties' legal rights to forbid 
ir
umvention of te
hnologi
al measures.

4. Conveying Verbatim Copies. You may 
onvey verbatim 
opies of the Program's sour
e 
ode as you re
eive it,

in any medium, provided that you 
onspi
uously and appropriately publish on ea
h 
opy an appropriate 
opyright noti
e;

keep inta
t all noti
es stating that this Li
ense and any non-permissive terms added in a

ord with se
tion 7 apply to the


ode; keep inta
t all noti
es of the absen
e of any warranty; and give all re
ipients a 
opy of this Li
ense along with the

Program.

You may 
harge any pri
e or no pri
e for ea
h 
opy that you 
onvey, and you may o�er support or warranty prote
tion

for a fee.

5. Conveying Modi�ed Sour
e Versions. You may 
onvey a work based on the Program, or the modi�
ations to

produ
e it from the Program, in the form of sour
e 
ode under the terms of se
tion 4, provided that you also meet all of

these 
onditions:

a) The work must 
arry prominent noti
es stating that you modi�ed it, and giving a relevant date.

b) The work must 
arry prominent noti
es stating that it is released under this Li
ense and any 
onditions added under

se
tion 7. This requirement modi�es the requirement in se
tion 4 to "keep inta
t all noti
es".
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) You must li
ense the entire work, as a whole, under this Li
ense to anyone who 
omes into possession of a 
opy.

This Li
ense will therefore apply, along with any appli
able se
tion 7 additional terms, to the whole of the work, and all its

parts, regardless of how they are pa
kaged. This Li
ense gives no permission to li
ense the work in any other way, but it

does not invalidate su
h permission if you have separately re
eived it.

d) If the work has intera
tive user interfa
es, ea
h must display Appropriate Legal Noti
es; however, if the Program

has intera
tive interfa
es that do not display Appropriate Legal Noti
es, your work need not make them do so.

A 
ompilation of a 
overed work with other separate and independent works, whi
h are not by their nature extensions

of the 
overed work, and whi
h are not 
ombined with it su
h as to form a larger program, in or on a volume of a storage

or distribution medium, is 
alled an "aggregate" if the 
ompilation and its resulting 
opyright are not used to limit the

a

ess or legal rights of the 
ompilation's users beyond what the individual works permit. In
lusion of a 
overed work in

an aggregate does not 
ause this Li
ense to apply to the other parts of the aggregate.

6. Conveying Non-Sour
e Forms. You may 
onvey a 
overed work in obje
t 
ode form under the terms of se
tions

4 and 5, provided that you also 
onvey the ma
hine-readable Corresponding Sour
e under the terms of this Li
ense, in one

of these ways:

a) Convey the obje
t 
ode in, or embodied in, a physi
al produ
t (in
luding a physi
al distribution medium), a

om-

panied by the Corresponding Sour
e �xed on a durable physi
al medium 
ustomarily used for software inter
hange.

b) Convey the obje
t 
ode in, or embodied in, a physi
al produ
t (in
luding a physi
al distribution medium), a

om-

panied by a written o�er, valid for at least three years and valid for as long as you o�er spare parts or 
ustomer support

for that produ
t model, to give anyone who possesses the obje
t 
ode either (1) a 
opy of the Corresponding Sour
e for all

the software in the produ
t that is 
overed by this Li
ense, on a durable physi
al medium 
ustomarily used for software

inter
hange, for a pri
e no more than your reasonable 
ost of physi
ally performing this 
onveying of sour
e, or (2) a

ess

to 
opy the Corresponding Sour
e from a network server at no 
harge.


) Convey individual 
opies of the obje
t 
ode with a 
opy of the written o�er to provide the Corresponding Sour
e.

This alternative is allowed only o

asionally and non
ommer
ially, and only if you re
eived the obje
t 
ode with su
h an

o�er, in a

ord with subse
tion 6b.

d) Convey the obje
t 
ode by o�ering a

ess from a designated pla
e (gratis or for a 
harge), and o�er equivalent

a

ess to the Corresponding Sour
e in the same way through the same pla
e at no further 
harge. You need not require

re
ipients to 
opy the Corresponding Sour
e along with the obje
t 
ode. If the pla
e to 
opy the obje
t 
ode is a network

server, the Corresponding Sour
e may be on a di�erent server (operated by you or a third party) that supports equivalent


opying fa
ilities, provided you maintain 
lear dire
tions next to the obje
t 
ode saying where to �nd the Corresponding

Sour
e. Regardless of what server hosts the Corresponding Sour
e, you remain obligated to ensure that it is available for

as long as needed to satisfy these requirements.

e) Convey the obje
t 
ode using peer-to-peer transmission, provided you inform other peers where the obje
t 
ode and

Corresponding Sour
e of the work are being o�ered to the general publi
 at no 
harge under subse
tion 6d.

A separable portion of the obje
t 
ode, whose sour
e 
ode is ex
luded from the Corresponding Sour
e as a System

Library, need not be in
luded in 
onveying the obje
t 
ode work.

A "User Produ
t" is either (1) a "
onsumer produ
t", whi
h means any tangible personal property whi
h is normally

used for personal, family, or household purposes, or (2) anything designed or sold for in
orporation into a dwelling. In

determining whether a produ
t is a 
onsumer produ
t, doubtful 
ases shall be resolved in favor of 
overage. For a parti
ular

produ
t re
eived by a parti
ular user, "normally used" refers to a typi
al or 
ommon use of that 
lass of produ
t, regardless

of the status of the parti
ular user or of the way in whi
h the parti
ular user a
tually uses, or expe
ts or is expe
ted to use,

the produ
t. A produ
t is a 
onsumer produ
t regardless of whether the produ
t has substantial 
ommer
ial, industrial or

non-
onsumer uses, unless su
h uses represent the only signi�
ant mode of use of the produ
t.

"Installation Information" for a User Produ
t means any methods, pro
edures, authorization keys, or other information

required to install and exe
ute modi�ed versions of a 
overed work in that User Produ
t from a modi�ed version of its

Corresponding Sour
e. The information must su�
e to ensure that the 
ontinued fun
tioning of the modi�ed obje
t 
ode

is in no 
ase prevented or interfered with solely be
ause modi�
ation has been made.

If you 
onvey an obje
t 
ode work under this se
tion in, or with, or spe
i�
ally for use in, a User Produ
t, and the


onveying o

urs as part of a transa
tion in whi
h the right of possession and use of the User Produ
t is transferred to the

re
ipient in perpetuity or for a �xed term (regardless of how the transa
tion is 
hara
terized), the Corresponding Sour
e


onveyed under this se
tion must be a

ompanied by the Installation Information. But this requirement does not apply if

neither you nor any third party retains the ability to install modi�ed obje
t 
ode on the User Produ
t (for example, the

work has been installed in ROM).

The requirement to provide Installation Information does not in
lude a requirement to 
ontinue to provide support

servi
e, warranty, or updates for a work that has been modi�ed or installed by the re
ipient, or for the User Produ
t in

whi
h it has been modi�ed or installed. A

ess to a network may be denied when the modi�
ation itself materially and

adversely a�e
ts the operation of the network or violates the rules and proto
ols for 
ommuni
ation a
ross the network.

Corresponding Sour
e 
onveyed, and Installation Information provided, in a

ord with this se
tion must be in a format

that is publi
ly do
umented (and with an implementation available to the publi
 in sour
e 
ode form), and must require

no spe
ial password or key for unpa
king, reading or 
opying.

7. Additional Terms. "Additional permissions" are terms that supplement the terms of this Li
ense by making

ex
eptions from one or more of its 
onditions. Additional permissions that are appli
able to the entire Program shall be

treated as though they were in
luded in this Li
ense, to the extent that they are valid under appli
able law. If additional

permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire

Program remains governed by this Li
ense without regard to the additional permissions.
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When you 
onvey a 
opy of a 
overed work, you may at your option remove any additional permissions from that 
opy,

or from any part of it. (Additional permissions may be written to require their own removal in 
ertain 
ases when you

modify the work.) You may pla
e additional permissions on material, added by you to a 
overed work, for whi
h you have

or 
an give appropriate 
opyright permission.

Notwithstanding any other provision of this Li
ense, for material you add to a 
overed work, you may (if authorized

by the 
opyright holders of that material) supplement the terms of this Li
ense with terms:

a) Dis
laiming warranty or limiting liability di�erently from the terms of se
tions 15 and 16 of this Li
ense; or

b) Requiring preservation of spe
i�ed reasonable legal noti
es or author attributions in that material or in the Appro-

priate Legal Noti
es displayed by works 
ontaining it; or


) Prohibiting misrepresentation of the origin of that material, or requiring that modi�ed versions of su
h material be

marked in reasonable ways as di�erent from the original version; or

d) Limiting the use for publi
ity purposes of names of li
ensors or authors of the material; or

e) De
lining to grant rights under trademark law for use of some trade names, trademarks, or servi
e marks; or

f) Requiring indemni�
ation of li
ensors and authors of that material by anyone who 
onveys the material (or modi�ed

versions of it) with 
ontra
tual assumptions of liability to the re
ipient, for any liability that these 
ontra
tual assumptions

dire
tly impose on those li
ensors and authors.

All other non-permissive additional terms are 
onsidered "further restri
tions" within the meaning of se
tion 10. If the

Program as you re
eived it, or any part of it, 
ontains a noti
e stating that it is governed by this Li
ense along with a term

that is a further restri
tion, you may remove that term. If a li
ense do
ument 
ontains a further restri
tion but permits

reli
ensing or 
onveying under this Li
ense, you may add to a 
overed work material governed by the terms of that li
ense

do
ument, provided that the further restri
tion does not survive su
h reli
ensing or 
onveying.

If you add terms to a 
overed work in a

ord with this se
tion, you must pla
e, in the relevant sour
e �les, a statement

of the additional terms that apply to those �les, or a noti
e indi
ating where to �nd the appli
able terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written li
ense, or stated as

ex
eptions; the above requirements apply either way.

8. Termination. You may not propagate or modify a 
overed work ex
ept as expressly provided under this Li
ense.

Any attempt otherwise to propagate or modify it is void, and will automati
ally terminate your rights under this Li
ense

(in
luding any patent li
enses granted under the third paragraph of se
tion 11).

However, if you 
ease all violation of this Li
ense, then your li
ense from a parti
ular 
opyright holder is reinstated

(a) provisionally, unless and until the 
opyright holder expli
itly and �nally terminates your li
ense, and (b) permanently,

if the 
opyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the 
essation.

Moreover, your li
ense from a parti
ular 
opyright holder is reinstated permanently if the 
opyright holder noti�es you

of the violation by some reasonable means, this is the �rst time you have re
eived noti
e of violation of this Li
ense (for

any work) from that 
opyright holder, and you 
ure the violation prior to 30 days after your re
eipt of the noti
e.

Termination of your rights under this se
tion does not terminate the li
enses of parties who have re
eived 
opies or

rights from you under this Li
ense. If your rights have been terminated and not permanently reinstated, you do not qualify

to re
eive new li
enses for the same material under se
tion 10.

9. A

eptan
e Not Required for Having Copies. You are not required to a

ept this Li
ense in order to re
eive or

run a 
opy of the Program. An
illary propagation of a 
overed work o

urring solely as a 
onsequen
e of using peer-to-peer

transmission to re
eive a 
opy likewise does not require a

eptan
e. However, nothing other than this Li
ense grants you

permission to propagate or modify any 
overed work. These a
tions infringe 
opyright if you do not a

ept this Li
ense.

Therefore, by modifying or propagating a 
overed work, you indi
ate your a

eptan
e of this Li
ense to do so.

10. Automati
 Li
ensing of Downstream Re
ipients. Ea
h time you 
onvey a 
overed work, the re
ipient

automati
ally re
eives a li
ense from the original li
ensors, to run, modify and propagate that work, subje
t to this Li
ense.

You are not responsible for enfor
ing 
omplian
e by third parties with this Li
ense.

An "entity transa
tion" is a transa
tion transferring 
ontrol of an organization, or substantially all assets of one, or

subdividing an organization, or merging organizations. If propagation of a 
overed work results from an entity transa
tion,

ea
h party to that transa
tion who re
eives a 
opy of the work also re
eives whatever li
enses to the work the party's

prede
essor in interest had or 
ould give under the previous paragraph, plus a right to possession of the Corresponding

Sour
e of the work from the prede
essor in interest, if the prede
essor has it or 
an get it with reasonable e�orts.

You may not impose any further restri
tions on the exer
ise of the rights granted or a�rmed under this Li
ense. For

example, you may not impose a li
ense fee, royalty, or other 
harge for exer
ise of rights granted under this Li
ense, and you

may not initiate litigation (in
luding a 
ross-
laim or 
ounter
laim in a lawsuit) alleging that any patent 
laim is infringed

by making, using, selling, o�ering for sale, or importing the Program or any portion of it.

11. Patents. A "
ontributor" is a 
opyright holder who authorizes use under this Li
ense of the Program or a work

on whi
h the Program is based. The work thus li
ensed is 
alled the 
ontributor's "
ontributor version".

A 
ontributor's "essential patent 
laims" are all patent 
laims owned or 
ontrolled by the 
ontributor, whether already

a
quired or hereafter a
quired, that would be infringed by some manner, permitted by this Li
ense, of making, using, or

selling its 
ontributor version, but do not in
lude 
laims that would be infringed only as a 
onsequen
e of further modi�
ation

of the 
ontributor version. For purposes of this de�nition, "
ontrol" in
ludes the right to grant patent subli
enses in a manner


onsistent with the requirements of this Li
ense.

Ea
h 
ontributor grants you a non-ex
lusive, worldwide, royalty-free patent li
ense under the 
ontributor's essential

patent 
laims, to make, use, sell, o�er for sale, import and otherwise run, modify and propagate the 
ontents of its 
ontributor

version.
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In the following three paragraphs, a "patent li
ense" is any express agreement or 
ommitment, however denominated,

not to enfor
e a patent (su
h as an express permission to pra
ti
e a patent or 
ovenant not to sue for patent infringement).

To "grant" su
h a patent li
ense to a party means to make su
h an agreement or 
ommitment not to enfor
e a patent

against the party.

If you 
onvey a 
overed work, knowingly relying on a patent li
ense, and the Corresponding Sour
e of the work is not

available for anyone to 
opy, free of 
harge and under the terms of this Li
ense, through a publi
ly available network server

or other readily a

essible means, then you must either (1) 
ause the Corresponding Sour
e to be so available, or (2) arrange

to deprive yourself of the bene�t of the patent li
ense for this parti
ular work, or (3) arrange, in a manner 
onsistent with

the requirements of this Li
ense, to extend the patent li
ense to downstream re
ipients. "Knowingly relying" means you

have a
tual knowledge that, but for the patent li
ense, your 
onveying the 
overed work in a 
ountry, or your re
ipient's

use of the 
overed work in a 
ountry, would infringe one or more identi�able patents in that 
ountry that you have reason

to believe are valid.

If, pursuant to or in 
onne
tion with a single transa
tion or arrangement, you 
onvey, or propagate by pro
uring


onveyan
e of, a 
overed work, and grant a patent li
ense to some of the parties re
eiving the 
overed work authorizing them

to use, propagate, modify or 
onvey a spe
i�
 
opy of the 
overed work, then the patent li
ense you grant is automati
ally

extended to all re
ipients of the 
overed work and works based on it.

A patent li
ense is "dis
riminatory" if it does not in
lude within the s
ope of its 
overage, prohibits the exer
ise of, or

is 
onditioned on the non-exer
ise of one or more of the rights that are spe
i�
ally granted under this Li
ense. You may

not 
onvey a 
overed work if you are a party to an arrangement with a third party that is in the business of distributing

software, under whi
h you make payment to the third party based on the extent of your a
tivity of 
onveying the work, and

under whi
h the third party grants, to any of the parties who would re
eive the 
overed work from you, a dis
riminatory

patent li
ense (a) in 
onne
tion with 
opies of the 
overed work 
onveyed by you (or 
opies made from those 
opies), or (b)

primarily for and in 
onne
tion with spe
i�
 produ
ts or 
ompilations that 
ontain the 
overed work, unless you entered

into that arrangement, or that patent li
ense was granted, prior to 28 Mar
h 2007.

Nothing in this Li
ense shall be 
onstrued as ex
luding or limiting any implied li
ense or other defenses to infringement

that may otherwise be available to you under appli
able patent law.

12. No Surrender of Others' Freedom. If 
onditions are imposed on you (whether by 
ourt order, agreement or

otherwise) that 
ontradi
t the 
onditions of this Li
ense, they do not ex
use you from the 
onditions of this Li
ense. If you


annot 
onvey a 
overed work so as to satisfy simultaneously your obligations under this Li
ense and any other pertinent

obligations, then as a 
onsequen
e you may not 
onvey it at all. For example, if you agree to terms that obligate you to


olle
t a royalty for further 
onveying from those to whom you 
onvey the Program, the only way you 
ould satisfy both

those terms and this Li
ense would be to refrain entirely from 
onveying the Program.

13. Use with the GNU A�ero General Publi
 Li
ense. Notwithstanding any other provision of this Li
ense,

you have permission to link or 
ombine any 
overed work with a work li
ensed under version 3 of the GNU A�ero General

Publi
 Li
ense into a single 
ombined work, and to 
onvey the resulting work. The terms of this Li
ense will 
ontinue to

apply to the part whi
h is the 
overed work, but the spe
ial requirements of the GNU A�ero General Publi
 Li
ense, se
tion

13, 
on
erning intera
tion through a network will apply to the 
ombination as su
h.

14. Revised Versions of this Li
ense. The Free Software Foundation may publish revised and/or new versions of

the GNU General Publi
 Li
ense from time to time. Su
h new versions will be similar in spirit to the present version, but

may di�er in detail to address new problems or 
on
erns.

Ea
h version is given a distinguishing version number. If the Program spe
i�es that a 
ertain numbered version of the

GNU General Publi
 Li
ense "or any later version" applies to it, you have the option of following the terms and 
onditions

either of that numbered version or of any later version published by the Free Software Foundation. If the Program does

not spe
ify a version number of the GNU General Publi
 Li
ense, you may 
hoose any version ever published by the Free

Software Foundation.

If the Program spe
i�es that a proxy 
an de
ide whi
h future versions of the GNU General Publi
 Li
ense 
an be used,

that proxy's publi
 statement of a

eptan
e of a version permanently authorizes you to 
hoose that version for the Program.

Later li
ense versions may give you additional or di�erent permissions. However, no additional obligations are imposed

on any author or 
opyright holder as a result of your 
hoosing to follow a later version.

15. Dis
laimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-

MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLD-

ERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY

AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU

ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO

IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS

THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,

SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE

THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCU-

RATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE

WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Se
tions 15 and 16. If the dis
laimer of warranty and limitation of liability provided
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above 
annot be given lo
al legal e�e
t a

ording to their terms, reviewing 
ourts shall apply lo
al law that most 
losely

approximates an absolute waiver of all 
ivil liability in 
onne
tion with the Program, unless a warranty or assumption of

liability a

ompanies a 
opy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
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