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Abstrat

This report desribes the theoretial bakground behind a onrete asting solver named

vvpfFoam. The work is done within the OpenFOAM framework [1℄ and an (at least)

be ompiled on versions from 2.2.0 to 2.2.2 (see Appendix B). OpenFOAM is liensed

under the GNU General Publi Liense (Version 3) and as suh, the same applies to the

solver vvpfFoam. That is, you may use, distribute and opy the solver vvpfFoam under

the terms of GNU General Publi Liense version 3, whih is displayed in Appendix C,

or (at your option) any later version.

The aim of the solver is to alulate the oarse aggregate distribution as a funtion

of time, with the objetive to predit the e�et of segregation by gravity as well as

by the shear (rate) indued partile migration. The solver enompasses two theories.

The �rst one is the Volume of Fluid Method (VOF), while the seond is the Drift Flux

Model (DFM). It should be noted that the starting developing point of vvpfFoam is the

interFoam solver and as suh the urrent solver ould have been named interDFMFoam,

dfmInterFoam, driftFluxInterFoam or similar.

One of the aims with the solver is to simulate operational problems related to un-

ertainties in asting preditions of fresh onrete (i.e. of newly mixed onrete). These

problems are segregation by gravity as well as segregation by shear (rate) indued partile

migration. Improved predition auray of fresh onrete �ow allows for the design of

more omplex and durable onrete strutures and additionally allows ready-mix plants

to investigate the e�et of stability variation during asting of a large/di�ult struture.

This is extremely important beause uneven aggregate distribution an inrease the loal

porosity and thus the permeability of onrete. Varying ontent of mortar auses het-

erogeneous shrinkage and reep in a given element. Moreover, high heterogeneity will

inrease the probability that these phenomena yield high internal stress gradients and

thus raking.

Although the solver is designed with fresh onrete in mind, it is not limited to this.

It an be used with other high visous materials whih behaves in a laminar manner (i.e.

in a non-turbulent manner). Example of this would be the �ow of aluminum partiles

submerged in visous oil. Also, other types of ement based materials an be analyzed,

like the �ow of sand partiles submerged in ement paste (i.e. investigation of �ow and

segregation of mortar).
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Chapter 1

Introdution

1.1 The Solver

A multiphase transient simulator, named vvpfFoam, has been developed that models the

dynamis of multiple �uid phases during asting of visous �uid like the fresh onrete (i.e.

newly mixed onrete). The development is realized within the OpenFOAM framework,

whih uses the �nite volume method (FVM). One of the aims with the solver is to simulate

operational problems related to unertainties in asting preditions of fresh onrete. This

inludes the e�et of the settlement of aggregates by gravity (i.e. segregation) as well as

the e�et of shear (rate) indued partile migration [2, 3, 4℄. Improved predition auray

of transient multiphase �ow allows for the design of more omplex and durable onrete

strutures and additionally allows ready-mix plants to investigate the e�et of stability

variation during asting of a large/di�ult struture.

The vvpfFoam enompasses two theories. The �rst one is the Computational Fluid

Dynamis (CFD) of transient visoplasti �uid with open (free) boundary, thus dividing

the system between the atmospheri air and a mixture �uid (e.g. fresh onrete). This

is what ould be onsidered as a standard Volume of Fluid approah (VOF) [5℄. This

subjet is treated in Chapter 3 (Page 26). The seond theory is the implementation of

�eld equation for partile distribution into the numerial framework to be able to alulate

segregation/settling within the mixture �uid (e.g. segregation of fresh onrete), inluding

the shear (rate) indued partile migration [2, 3, 4℄. The approah used in treating the

segregation is based on the Drift Flux Model (DFM

1

), whih is derived from the so-alled

two-�uid model [6, 7℄. This subjet is treated in Chapter 2, Page 16.

The solver an be ompiled on OpenFOAM 2.2.0 to 2.2.2 and is designed for high vis-

ous �uid only (i.e. laminar �ow) and thus turbulene is not inluded. Although designed

with fresh onrete in mind, it an be used with other high visous materials as well, e.g.

aluminum partiles submerged in visous oil. As the atmospheri air has no real stress

related interations with the mixture (e.g. with the fresh onrete), the former is assumed

to behave in a non-turbulent manner as well (i.e. atmospheri laminar �ow). If turbulent

1

In some literature, the term �Drift Flux Method� is used, rather than �Drift Flux Model�.

1
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analysis is required for the mixture (e.g. small ontaminant partiles submerged in water),

the user must add it to the solver.

To reiterate, in the vvpfFoam solver, a standard VOF approah is mixed with the

DFM and the approah is desribed in Chapter 4, Page 31. The former alulates the

�ow of two �uids that do not generally intermix (immisible) and thus usually have a

lear boundary between them, e.g. onrete and atmospheri air. For the seond part of

the solver, where the DFM is applied, the phases are generally in an intermixed (misible)

state, e.g. oarse aggregates suspended in mortar. Three phases are involved in the solver,

of whih atmospheri air is the �rst phase (with a volume fration α2). The mixture �uid

(volume fration α1), whih ould for example represent fresh onrete, is divided between

a matrix phase (also, ontinuous phase) and a partile phase (also, dispersed phase), whih

onstitute the seond and the third phase, respetively (with volume frations αc and αd).

In addition to αc and αd, the solid onentration

2

of the ontinuous and the dispersed

phases are also designated with βc = αc/α1 and βd = αd/α1, respetively (see Chapter 4).

1.2 Servie Life of the Conrete Struture

The load arrying apaity and servie life of onrete struture is very muh dependent

on the quality and suess of onrete plaement into formwork at jobsite [8, 9, 10, 11℄.

In reent years numerial modeling of onrete plaement has showed great potentials to

beome an important tool for optimization of suh proess [12℄. Only reently, researhers

from various part of the world have started to work on suh asting predition tools using

di�erent CFD softwares [8℄. But lot of work is still to be done to understand the large sale

behavior of the involved �ow proesses [8℄, espeially in terms of alulating the oarse

aggregate onentration as a funtion of loation and time [13℄. In partiular, variation

in aggregate distribution an inrease the loal porosity and thus the permeability of

onrete. This an also ause heterogeneous shrinkage and reep in a given onrete

element. Moreover, high heterogeneity will inrease the probability that this phenomenon

yields high internal stress gradients and thus raking with the redution in load arrying

apaity of the onrete struture as a result [11℄.

The Self Compating Conrete (SCC) is a very �uid onrete and thus was expeted

to be the answer to asting problems. However, experiene has shown that even for suh

type of material, there will always exist a formwork and steel bars on�guration in whih

asting problems may our [8℄. Furthermore, these asting problems may not be fully

resolved unless one an alulate the aggregate onentration as a funtion of time and

loation and espeially its response to di�erent types of obstales.

2

The term �solid onentration� is also designated as �phase volume� [2℄ and sometimes as �volume

fration� or �solid fration�. All these terms will be used interhangeably in this work.
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1.3 Casting of a Wall Setion � An Example

Several di�erent types of formwork geometries have been used for testing the vvpfFoam

solver. An example of suh is shown in Fig. 1.1 and onsists of a wall setion. The

onrete is being pumped into the formwork from the left side and the diameter of the

hose is about 20 cm. The in�ow rate is suh that it takes about 80 seonds to �ll the

formwork. The number of ells in the urrent ase is about 1.8 million and alulations

were performed on resoures provided by the Ielandi High Performane Computing.

Figure 1.1: Geometry of the wall setion (with reinforing steel) used in some of the

simulation tests in this work.

The length of the wall is 10m, height is 3.4m, thikness is 30 cm and the length of

the small side wall (i.e. the one pointing into the overall struture) is 1.9m. In the front

(main) wall is a double layer steel reinforement with over of 34mm, but in the side wall

is a single layer reinforement loated at the wall enter. The diameter of the rebar

3

is

12mm, while the size of the reinforement mesh is 250× 250mm.
In Fig. 1.2 the onrete is being pumped from the base of the formwork, i.e. in 34 cm

height from the ground (see the arrow). Another ase where the onrete is pumped from

above is shown in Fig. 1.3, with a fall height of 2.1m. The latter approah is more seldom

used at jobsite, but is inluded to put a ertain strain on the solver. In Figs. 1.2 and 1.3,

the ontinuous phase onsists of mortar/�ne onrete (here, all materials below 11mm in

diameter), while the dispersed phase onsists of oarse aggregates (in this ase, the 11 -

16mm aggregates).

The olor bar shown in Figs. 1.2 and 1.3 applies to both illustrations (a) and (b) and

represents the value βd at the ell losest to the wall (i.e. wallBetaD). In aordane with

the previous text, the olorbar desribes the solid onentration of oarse aggregates (here,

the 11 - 16mm aggregate phase). The dark red olor, namely βd = 0.3, represents high
ompation (or onentration) of oarse aggregates, while the dark blue olor, βd = 0,
represents area that is ompletely absent of oarse aggregates. At suh loation, only

mortar (i.e. �ne onrete < 11mm) remains. In the light brown olor range, the solid

onentration is lose to βd = 0.2, whih in this ase means homogeneous onrete (this

3

Rebar is short for reinforing bar, and also known as reinforing steel, steel bars, reinforement steel

or just reinforement, among other designations.
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Figure 1.2: Solid onentration of oarse aggregates (i.e. phase volume), during the pump-

ing of fresh onrete into a formwork from the ground (see the arrow) at 20 s (a) and 40 s
(b) after start of pumping.

Figure 1.3: Solid onentration of oarse aggregates (i.e. phase volume), during pumping

of fresh onrete into a formwork from above, with a fall height of 2.1m (see the arrow).
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value depends on the mixture proportions), or rather an initial state of onentration of

oarse aggregates. Finally, the blue olor above the onrete represents the atmospheri

air, or α2.

The same type of onrete is used in Figs. 1.2 and 1.3. It has a low apparent visosity

η1 and is highly prone to segregation as is learly visible with the red olor at the bottom

of eah formwork. That is, settlement by gravity (i.e. �segregation�) as well as by shear

(rate) indued partile migration are allowed to our simultaneously. These two proesses

are also allowed to a�et the apparent visosity η1 = η1(βd), whih again a�ets the �ow

and thus the two pre-mentioned settlement types. Inluding the large segregation that

is learly visible at the base in Figs. 1.2 and 1.3, reinforement shadows are also present

near the rebars as a onsequene of the partiular onrete type used.

1.4 Testing the VOF Part of the Solver

As mentioned in Setion 1.1, the vvpfFoam solver is a mixture of VOF and DFM. As

a part of the ode veri�ation, the output of the urrent solver is ompared with the

outome of the standard interFoam solver. Initially, the latter was used as a template in

the beginning of the ode development of the former. As the interFoam is a VOF solver

only, the drift veloity Vdj (see Chapter 6) must be set equal to zero in the vvpfFoam

solver. Also, the apparent visosity η1 must be set to something that both solvers an

use.

Here, a standard Bingham model is applied, with plasti visosity of µ = 50Pa · s and
yield stress of τ0 = 10Pa. For the interFoam, the density is set as ρ1 = 2300 kg/m3

, while

for the vvpfFoam the mixture density is implemented as ρ1 = βdρd + βcρc = 2700 kg/m3 ·
0.2 + 2200 kg/m3 · 0.8 = 2300 kg/m3

(see Eq. (4.14), Page 34).

1.4.1 A �Cake Break� Problem

In this ase, a ertain type of �dam break� problem is tested. The geometry is shown in

Fig. 1.4, and onsists of quarter of a �ake� about 45 cm in height and radius of 55 cm,
whih is released to �ow by its own weight within a large box (90 cm x 1.4m x 50 cm).

In front of the ake are 16 small pillar obstales about 12 cm in diameter, between whih

the material has to �ow.

With the test setup shown in Fig. 1.4, the vvpfFoam manages to reprodue the

interFoam results exatly. A demonstration of this is shown in Fig. 1.5b. More pre-

isely, this ase onsists of two simulation results ut in half with the ParaView visual

software. The vvpfFoam result is marked with �III�, while the interFoam result with

�IV�. If any di�erene exists between the two results, suh would be learly visible where

the two results meet in the middle. To demonstrate this point, an example of suh dif-

ferene is produed in Fig. 1.5a, with interFoam: The ase marked with �II� the same

result as marked �IV� in Fig. 1.5b, while the ase marked with �I� is an interFoam result

with 20% higher rheologial values. In the early ode development, suh type of di�erene
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Figure 1.4: The geometry and mesh of the �ake break� problem (with 317,684 ells).

Figure 1.5: Simulation results with the setup in Fig. 1.4. To the left are two interFoam

results using di�erent rheologial values (I and II), while to the right is a omparison of

vvpfFoam (III) and interFoam (IV).
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emerged between vvpfFoam and interFoam, however in smaller degree than demonstrated

in Fig. 1.5a.

1.4.2 Complete Wall Setion

In this setion, the same formwork is used as in Fig. 1.1, however now without rebars.

The results are shown relative to the enter ross-setion of the front wall as demonstrated

in Fig. 1.6. The onrete is being pumped into the formwork from one side, in whih the

drop height is 2.1m. As before, the in�ow rate is suh that it takes about 80 seonds to

�ll the formwork. Plaing the hose at this height is done to put a ertain strain on the

solver. The number of ells in the urrent ase is about 420,000.

Figure 1.6: Geometry of the wall setion used in the simulation tests.

Figs. 1.7a-f show the solid onentration of the overall mixture α1 (i.e. of the fresh

onrete). As before, the Bingham model is applied, with plasti visosity of 50 Pa · s and
yield stress of 10 Pa. Illustrations (a) () and (e) are results generated by interFoam and

refer to 20, 40 and 60 seonds after start of pumping. Illustrations (b), (d) and (f) are

results of α1 at the same time points, generated by the vvpfFoam. As shown, the outome

of the two solvers are almost exatly the same.

As mentioned before, the onrete is being pumped into the formwork with a drop

height about 2.1m. This makes the �owing system more �volatile�, espeially near and

around the hose. Any tiniest di�erene generated near the hose will evolve with the �ow

and thus grow into larger di�erenes downstream.

When omparing the results in Figs. 1.7a-f, with arefully observation, one an see

small di�erenes in results between the two solvers. However, it should be noted that

suh di�erene is not observable when plaing the hose near the base of the formwork as

done in Fig. 1.2, nor was any di�erene observed for the ase in Setion 1.4.1.
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Figure 1.7: Comparison of a standard VOF solver interFoam (illustrations (a), () and

(e)) with the vvpfFoam solver (illustrations (b), (d) and (f)).

1.5 Testing the DFM Part of the Solver

1.5.1 Settling by Gravity (Setion 6.3)

In this setion, the simulation setup is a vertial settling tank shown in Fig. 1.8. Its total

height is 1m in z diretion and the width is 20 cm both in x and y diretions. In this ase,
there is no veloity drive, i.e. no in�ow, out�ow, motion by gravity and so forth, meaning

U = 0. As shown in Fig. 1.8a, the mixture height is 0.8m. The solid onentration at

time t = 0 s is βd = 0.2 and the maximum possible paking in this ase is 0.4. The number

of ells used in Fig. 1.8 is 2,560,000.

The settling veloity Vs is alulated by Eq. (6.6) on Page 60, using µN = 7.67 Pa · s,
ρc = 2200 kg/m3

, ρd = 2700 kg/m3
and Da = 13mm, whih results in −6mm/s iz. By

Setion 6.1.4 (Page 60), this means a onstant drift veloity of Vdj = −6mm/s iz. The

implementation in gravitySegregation.H is as follows:

onst dimensionedSalar onstVsGR

(

"onstVsGR",

dimensionSet(0,0,1,0,0,0,0),

// salar(1.0194e-4) // *g = -1 mm/s

// salar(3.0581e-4) // *g = -3 mm/s

salar(6.1162e-4) // *g = -6 mm/s

);
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tmp<volVetorField> VsGR = mag(alpha1)*onstVsGR*g;

#ifdef GRAVITY_SEGREGATION

VdjGR =

slowDown2

(

alphaD, // alphaD, or betaD, depending on user preferene!

alphaDMIN,

alphaDMAX

)*(1.0*VsGR);

#else

VdjGR = zeroVeloity;

#endif

As the drift veloity Vdj is onstant, the outome of this experiment is not dependent

on mixture density ρ1 nor on the apparent visosity η1.

Figure 1.8: Solid onentration of the dispersed phase βd at 0 s (a), 33.3 s (b), 35.0 s (),
66.7 s (d), 70.0 s (e) and 72.0 s (f), respetively (with R = 0, .f. Setion 4.9).

In Fig. 1.8a, the initial ondition βd = 0.2 is shown, valid at time t = 0 s, while in
subsequent �gures (b), (), (d), (e) and (f), are the simulation results for βd at time 33.3,

35.0, 66.7, 70.0, and 72.0 s, respetively. The result in Fig. 1.8f applies also at 170 s, whih
is the end of simulation (i.e. the result at time t = 72.0 s is the same as at time 170 s).

Assuming that the observed settling of Vs = −6mm/s iz is equal to the drift veloity
Vdj during the whole simulation (see Setion 6.1.4 on Page 60) and with mixture olumn

of L = 0.8m, the time it should take for the suspended partile to settle should be about

∆t = (L/2)/ |Vs| = (0.4m)/(6mm/s) = 66.7 s. But as shown in Fig. 1.8e, with Vdj =
−6mm/s iz, this ondition does not our until at 70 s, meaning a 5% time di�erene.
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At the time of writing, it is unlear if this di�erene is due to an issue with the ode or

simply a natural di�erene between the drift veloity Vdj and the observed settling Vs

(see Eq. (6.4)), or due to a theoretial solver di�ulty in alulating stati ases, i.e. a

ase with U = 0.

1.5.2 Settling by Shear Indued Partile Migration (Setion 6.4)

To hek the solver relative to settling by shear (rate) indued partile migration, the

numerial experiment done by Fang and Phan-Thien [14℄ is reprodued. The theory

applied is in aordane with Setion 6.4, Page 63, using the apparent visosity of Krieger

and Dougherty

4

, η1 = µ(αd), where µ(αd) is given by Eq. (5.12), Page 54. Here, µ(0)
is set equal to 1 Pa · s. The apparent visosity is implemented in apparentVisosity.H

(through return visous_6()), reprodued with the following ode (αd = ϕ = varPhi,

.f. the last paragraph in Setion 5.1):

tmp<volSalarField> visous_6

(

mag(alpha1)*

(

mu*pow(mag(salar(1) - varPhi/salar(0.68)),salar(-1.82))

)

+ mag(salar(1) - alpha1)*eta2

);

In [14℄, a oaxial ylinders rheometer is used, with a rotating inner ylinder. The

dimensionless riteria onsists of Ri/Ro = 0.25, where the term Ri represents the radius

of the inner ylinder and Ro radius of the outer ylinder. To aommodate this riteria,

the inner ylinder is set as Ri = 8.0375mm, while the outer ylinder as Ro = 32.1500mm.
The total height of the rheometer is set as h = 56.2625mm. The overall geometry of the

rheometer is shown in Fig. 1.9.

Figure 1.9: The overall geometry of the rheometer used in the urrent test.

4

The di�erene between α1, αd and ϕ will not be ompletely lear until reading the whole report.

Thus for the urrent text, assume αd = βd = ϕ.
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The test material onsists of small inert neutrally buoyant partiles with almost mono-

sized partile size distribution, with diameter of Da = 1350µm [14℄ (radius a = Da/2).
The orresponding dimensional number isDa/Ro = 0.042. The maximum paking fration

is ϕm = 0.68 while the intrinsi visosity is set as [η] = 1.82 [14℄ (see also Eq. (5.12) about
ϕm and [η]). The density of the suspended partile is equal ρd = 1188 kg/m3

and with

a neutrally buoyant suspension, then ρc = ρd = ρ1. The solid onentration is initially

uniformly distributed at αd = 0.5. The inner ylinder is set to rotate at time t = 0 s with
the angular veloity of ω = 1 rad/s. Although the theory of Setion 6.4 is being used, the

equation used in this test is not Eq. (6.8) (Page 63), but as always, Eq. (4.20) (Page 35).

5

10

15

20

25

30

0.25 0.5 0.75 1

µ(
α d

) 
/ µ

(0
) 

 [-
]

r/Ro  [-]

 αd|t=0s = 0.50;

 Kc = 0.41;  Kη = 0.62;  a = 675 µm

 (a)

0.2

0.3

0.4

0.5

0.6

0.7

0.25 0.5 0.75 1

α d
  [

-]

r/Ro  [-]

20 revolutions

100 revolutions

200 revolutions

 (b)

Figure 1.10: Dimensionless visosity η1/µ(0) = µ(αd)/µ(0) (a) and solid onentration αd

(b) as a funtion of dimensionless radius r/Ro, on ompletion of di�erent inner ylinder

revolutions (at the height z = 2.5 cm).

Fig. 1.10a shows a plot of the dimensionless visosity η1/µ(0) = µ(αd)/µ(0) as a

funtion of dimensionless radius r/Ro at the height of z = 2.5 cm. Likewise, Fig. 1.10b

shows the plot of the solid onentration αd as a funtion of r/Ro at the same height. The

legend in the latter applies for both illustrations and shows the orresponding number of

turns. More preisely, the �rst plot applies after 20 revolutions of the inner ylinder, while

the last plot after 200 revolutions. The results shown in Fig. 1.10b are an exat math of

the simulation results given by Fig. 4 in [14℄.

It should be noted that although the number of ells in this ase is only about 230,000,

the alulation took about 10 days using one omputer node (24 ores). This is a rather

long alulation time and is probably due to instability, whih ould be attributed to how

the term ∇η1/η1 is urrently evaluated in the solver, i.e. when alulating Eq. (6.14) on

Page 64. At the time of writing, there was not su�ient time to investigate this further,

but the user might have to hange how the term ∇η1/η1 is alulated.
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1.6 Conservation of Material Volume

For the ase in Fig. 1.8, the total amount of mixture is 0.2m · 0.2m · 0.8m = 32 l and
the amount of dispersed phase βd is 32 l · 0.2 = 6.4 l. In Fig. 1.11 are shown the volume

onservation for α1 and αd, for this ase. The mixture onentration α1 is solved by

Eq. (4.23), Page 36, while the onentration for the dispersed phase αd is solved by

Eq. (4.20), Page 35. As shown, hange in either α1 or αd is basially nonexistent. Also

shown in Fig. 1.11 is the volume hange in βd, but as demonstrated with Eq. (4.8), Page 33,

this term is alulated and not solved. Moreover, as disussed in Setion 4.7, there an be

abnormal hanges in this value, espeially at the interfae between air and mixture that

is mostly of little importane. The point is, that the hanges in βd shown in the right

illustration of Fig. 1.8 is muh less important relative to the hanges in αd.
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Figure 1.11: Volume onservation for α1 (left) and αd (right), for the ase in Fig. 1.8.

For the above ase, the mixture veloity is zero U = 0. To examine the onservation

of α1 and αd for a moving mixture, the ake break problem shown in Setion 1.4.1 is

examined (see Figs. 1.4 and 1.5). Here, a onstant drift veloity of Vdj = −3mm/s iz is
applied and the orresponding settling is shown in Fig. 1.12.

In Fig. 1.13 are shown the volume onservation for α1 and αd, for the ase of Fig. 1.12.

Here, the onservation is slightly less than applies for the ase of Fig. 1.8, or 0.25% for α1

and 0.47% for αd for the whole simulation time.

The alulation of ompressibility for this ase (by Eqs. (4.66) and (4.67)) is shown in

Fig. 4.4, Page 48, in onnetion with disussion of the so-alled pressure equation.

1.7 Known Issues

1. For losed system, the volume of αd is not neessarily 100% onserved, .f. Fig. 1.13.

This has to do with the term �(αdρc/ρ1)Vdj� in Eq. (4.20), Page 35, whih an behave

as a soure term.
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Figure 1.12: Solid onentration of the dispersed phase βd at 0 s (a), 3 s (b), 10 s () and
30 s (d), respetively (with R = 0, .f. Setion 4.9).
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Figure 1.13: Volume onservation for α1 (left) and αd (right), for the ase in Fig. 1.12.
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2. For losed system, the volume of α1 is in some ases not 100% onserved, .f.

Fig. 1.13. In suh ases, putting the drift veloity Vdj equal to zero results in a

better volume onservation. Although the drift veloity Vdj is not diretly present

in Eq. (4.23), Page 36, it will a�et this equation through the hanges in ρ1 (see

Eq. (4.14)), whih might bring about an arti�ial soure. Setting ρ1 = 1 in Eq. (4.23)
with Vdj 6= 0, results in better onservation. This an be done by ommenting the

line #define ALPHA1RHO_SOLVE in the soure �le maroDefinitions.H and reom-

pile the solver.

3. During a pure vertial settlement (see the ase in Setion 1.5), the �rst three bottom

ells are simultaneously �lled with αd when using MULES::impliitSolve

5

. After

that, subsequent ells are �lled one by one, as expeted. To resolve (or path) this

unfortunate behavor, the �rst row of ells must be divided into three for a given

ase, as shown in the right illustration of Fig. 1.14. These three ells then behave

as one, relative to αd.

4. A ustom version of the settlingFoam was reated to make omparison with the

vvpfFoam. The ustomization generally onsisted of implementing the same drift

veloity and apparent visosity as used in the vvpfFoam solver, as well as disabling

turbulene in the former. The ase setup was the same in both ases, to the extent

possible. Unfortunately, after the modi�ations, the settlingFoam solver always

rashed when starting the �lling of α into the seond row of ells (see Fig. 1.14a).

Up to that point, both solvers behaved alike (however, only when the �rst row of

ells are split into three rows for vvpfFoam as disussed in item 3 above). Thus, to

date, there is no omplete omparison with the settlingFoam solver.

Figure 1.14: Comparison of results by settlingFoam (a) with vvpfFoam (b).

Most ertainly, as with all soure odes, there are other unknown issues beyond what

is mentioned here. Sine this solver is open and liensed under the GNU General Publi

Liense (as applies with OpenFOAM), the user has the opportunity to repair urrent and

future issues. The user an modify the ode, add new apabilities and otherwise enhane

it to the spei�ation needed. However, before ommitting to suh a task, it is impor-

tant to read and understand this doument. Mixing VOF with DFM is not straightfor-

ward. This solver should not be onfused with apability of other existing solvers within

5

The �rst four bottom ells are simultaneously �lled with αd when using MULES::expliitSolve.
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the OpenFOAM framework, like the multiphaseInterFoam, interMixingFoam or the

twoPhaseEulerFoam. The urrent solver deals with the treatment of immisible �uids

(i.e. �uids that do not intermix), in ombination with the treatment of misible �uids (i.e.

�uid that do intermix). In addition to the intermixture of phases, the solver has apability

to allow for slip between phases, whih is an important aspet to allow for segregation

by gravitational settling and/or by other means, like by the shear (rate) indued partile

migration.
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Chapter 2

Drift Flux Model � DFM

2.1 Introdution

The Volume of Fluid Method (VOF) will be treated in Chapter 3. This partiular method

alulates the �ow of two �uids that do not generally intermix (immisible) and thus

usually have a lear boundary between them, e.g. fresh onrete and atmospheri air.

However, for the urrent topi, namely the Drift Flux Model (DFM), the phases are

generally in an intermixed (misible) state, e.g. oarse aggregates suspended in mortar.

Although there exist various douments and reports about the DFM, these are often

fragmented with missing in-between mathematial derivations and less relevant to the

urrent topi. Beause of this, a whole hapter is dediated to the subjet in this report.

2.2 Two-Fluid Method

The starting point for the formulation of the Drift Flux Model (DFM) in Setion 2.3,

is the Multi-Fluid Method, using two phases. With only two phases involved, the latter

method is also known as the Two-Fluid Method. The Multi-Fluid Method solves mass

and momentum equations for eah phase. The basi equations of the Two-Fluid Method

are shown in Setions 2.2.2 and 2.2.3, and follows the representation that has previously

been given in [15, 16℄.

2.2.1 Fundamental Relations

The primary variable in the Multi-Fluid Method is the volume fration

6

of phase k, whih
is represented with the term

7 βk and de�ned in Eq. (2.1). In this equation, the variable

Vm designates the (loal) volume of the mixture, i.e. volume of all phases ombined, while

6

To reiterate Footnote 2, the term �volume fration� is also designated as �phase volume� and sometimes

as �solid onentration� [2℄. All these terms will be used interhangeably in this work.

7

Commonly, the volume fration of phase k is rather designated with the term αk (instead of βk), but

beause of the omplexity of the urrent work, the term α needs to be reserved for later usage.

16
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the term Vk represents the volume of phase k within this mixture volume (i.e. Vk ≤ Vm).

More spei�ally, the following always applies

βk =
Vk

Vm
∧ Vm =

n
∑

k=1

Vk ⇒
n
∑

k=1

βk = 1 (2.1)

As shown above, summarizing the volume of all phases, namely Vk, gives the mixture

volume Vm. From this, by summarizing the volume fration βk of eah phase k results in

the value 1.

In this work, the mixture volume Vm is also represented with the term V1 and the

reason for doing this will be lear in Setion 4.2 (i.e. Vm ≡ V1).

The density of phase k is represented with ρk, while mk is its mass, meaning ρk =
mk/Vk. From this, the following relations are obtained

βkρk =
Vkρk
Vm

=
mk

Vm
(2.2)

The mixture density is represented with ρm, while mm =
∑

mk is its mass. The relation-

ship between density, volume and mass for the mixture is ρm = mm/Vm. From this, the

following relations are obtained

ρm =
mm

Vm
=

∑n
k=1mk

Vm
=

n
∑

k=1

mk

Vm
=

n
∑

k=1

βkρk (2.3)

The last part in the above equation was obtained with help from Eq. (2.2). In this

work, the mixture density ρm and mass mm are also represented with the terms ρ1 and

m1, respetively. The reason for doing this will be lear in Setion 4.2 (i.e. ρm ≡ ρ1 ∧
mm ≡ m1).

2.2.2 Mass Conservation of Eah Phase k

The mass onservation of eah phase k (i.e. equation for the volume fration of phase k)
is given by [15℄ (see also [16℄)

∂βkρk
∂t

+∇ · (βkρkVk) = Γk (2.4)

The term Γk is the rate of mass generation of phase k andVk is the enter of mass veloity

of phase k. That is, if the phase k is omposed of N partiles

8

, eah of mass mk,i, and

veloity of Vk,i, the veloity of phase k is given by (see [3℄, Setion 2.2)

Vk =

∑N
i=1mk,iVk,i
∑N

i=1mk,i

∧ mk =

N
∑

i=1

mk,i (2.5)

8

That is, partiles, moleules or whatever that is relevant for the physial system to be investigated.
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It should be lear that Eq. (2.5) is never expliitly used in the urrent doument and

serves only as a philosophial foundation

9

.

The term Vm represents the enter of mass veloity of the mixture (also, �mixture

veloity�) and is de�ned in the same manner as above, by (here, assuming that the mixture

onsists of n phases)

Vm =

∑n
k=1mkVk
∑n

k=1mk
∧ mm =

n
∑

k=1

mk (2.6)

Continuing further with the above equation, the following is obtained

Vm =

∑n
k=1 (mk/Vm)Vk
∑n

k=1mk/Vm
=

∑n
k=1 βkρkVk
∑n

k=1 βkρk
=

∑n
k=1 βkρkVk

ρm
(2.7)

In the last part of the above equation, Eq. (2.3) was used.

In this work, the mixture veloity Vm is also represented with U1 and the reason for

doing this will be lear in Setion 4.2 (i.e. Vm ≡ U1).

By summing the mass onservation Eq. (2.4) over all phases k, the following is obtained

∂

∂t

n
∑

k=1

(βkρk) +∇ ·
n
∑

k=1

(βkρkVk) =

n
∑

k=1

Γk (2.8)

Beause the total mass is onserved, the right hand side of Eq. (2.8) must vanish [15℄.

By using Eqs. (2.3) and (2.7) in Eq. (2.8), the ontinuity equation for the mixture an be

derived and is given by Eq. (2.9).

∂ρm
∂t

+∇ · (ρmVm) = 0 (2.9)

2.2.3 Conservation of Momentum for Eah Phase k

For the Multi-Fluid Method, the momentum equation for eah phase k, is given by [6, 7,

15, 16℄

∂

∂t
(βkρkVk) +∇ · (βkρkVkVk) = ∇ · (βkσk) + βkρkg +Mk (2.10)

The term g is the gravity, while βk, ρk and Vk have already been de�ned in the previous

setions. The term σk is the stress tensor for phase k. For many �uids, this onstitutive

equation is represented as [2℄,

σk = −pk I+Tk (2.11)

9

As demonstrated in [3℄ (Setion 2.2), in order to reonstrut the Cauhy equation of motion, the �uid

veloity must be de�ned in this manner. This reonstrution is based on partile�partile interations

between partiles that make up the ontinuum partile [3℄. Being a �hild� of the Cauhy equation, the

same applies for the Navier�Stokes equations.
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where the seond order tensor Tk is known as the extra stress tensor, I is the unit dyadi,

and pk is the pressure (the pressure of eah phase will be slightly disussed in Setion 2.3.4).
Sine the subjet of the urrent work is a high visous �uid with low Reynolds numbers,

the term Tk does not ontain any turbulent omponents.

In Eq. (2.10), the term Mk is the average interfaial momentum soure for phase k.
That is, it represents transfer of momentum from one phase to the the next, like drag,

lift, surfae tension and so forth [7, 15, 16℄. Its determination represents the largest

unertainties in the results of Multi-Fluid Method [16℄.

2.3 Drift Flux Model - DFM

As previously mentioned, the Drift Flux Model is based on the Multi-Fluid Method,

using two phases, then also known as the Two-Fluid Method. As suh, many of the above

equations will be reused in the following setions.

2.3.1 Fundamental Relations

As in the Two-Fluid Method, the Drift Flux Model (DFM) assumes that the �uid mixture

onsists of two phases. It is assumed that the two �uids an intermix as well as separate,

depending on the �ow onditions involved. The latter phenomenon is also known as phase

separations, slip between phases, settling, segregation, and so forth, depending on the �eld

of siene in whih the DFM is applied (i.e. waste water treatment, sewage treatment,

�ow of fresh onrete, et.).

Here, the �uid mixture is a suspension that onsists of a ontinuous phase (i.e. a

matrix) and a dispersed phase (i.e. suspended partiles). The ontinuous phase will have

the symbol , while the dispersed phase has the symbol d. Thus, the numbering of phases

is in terms

10

of k = c, d. With this �numbering sheme�, the following is obtained from

Eq. (2.1)

βc =
Vc

Vm
∧ βd =

Vd

Vm
∧ Vm = Vc + Vd ⇒ βc + βd = 1 (2.12)

The mixture density is given by Eq. (2.3) and with two phases it is alulated as

ρm = βcρc + βdρd (2.13)

Likewise, the alulation of mixture veloity is shown in Eq. (2.7) and with two phases

it is given by

Vm =
βcρcVc + βdρdVd

ρm
(2.14)

10

Often, the numbering of phases is in terms of numbers like k = 1, 2, but beause of the omplexity

of the urrent work (see Chapter 4), suh labeling sheme needs to be reserved for later usage.
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The relative veloity

11

between the two phases is de�ned by [7℄

Vr = Vc −Vd (2.15)

The di�usion veloity is de�ned by the following equation [7℄

Vkm = Vk −Vm ∀ k = c, d. (2.16)

The term Vk is the enter of mass veloity of phase k (see Eq. (2.5)). From Eq. (2.16),

the di�usion veloity of eah phase, namely c (the ontinuous phase) and d (the dispersed
phase), are given by the following

Vcm = Vc −Vm (2.17)

Vdm = Vd −Vm (2.18)

Below are derivations of some important relationships that are used later. These are

obtained from previous derivations and de�nitions.

The �rst relationship is as follows

βcρcVcm + βdρdVdm = 0 (2.19)

The proof of this is given by Eq. (2.20) shown below.

βcρcVcm + βdρdVdm = βcρc(Vc −Vm) + βdρd(Vd −Vm) =
βcρcVc − βcρcVm + βdρdVd − βdρdVm =
βcρcVc + βdρdVd − (βcρc + βdρd)Vm = βcρcVc + βdρdVd − ρmVm =
ρmVm − ρmVm = 0

(2.20)

In the above equation, Eqs. (2.17) and (2.18) were used, while in its third line, Eq. (2.3)

was used. Finally, in its fourth line, Eq. (2.7) was used.

The seond relationship is obtained from Eq. (2.17), with the onomitant use of

Eqs. (2.3) and (2.7):

Vcm = Vc −Vm = Vc −
βcρcVc + βdρdVd

βcρc + βdρd

=
βcρcVc + βdρdVc − βcρcVc − βdρdVd

βcρc + βdρd

=
βdρdVc − βdρdVd

ρm
=

βdρd
ρm

(Vc −Vd) =
βdρd
ρm

Vr

(2.21)

In the last line of Eq. (2.21), the relative veloity aording to Eq. (2.15) was used. By

rearranging terms in Eq. (2.19), the third relationship is obtained:

Vdm = − βcρc
βdρd

Vcm = −βcρc
ρm

(Vc −Vd) = −βcρc
ρm

Vr (2.22)

11

In some literature, the relative veloity is de�ned as Vr = Vd − Vc instead of Vr = Vc − Vd.

Irrespetive of whih is used, the di�erene is not onsequential beause other terms will just hange

aordingly and the physis of the Drift Flux Model will remain unhanged.
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In the above, Eqs. (2.15) and (2.21) were used.

The the volumetri �uxes of eah phase is de�ned as (see for example [7℄)

jk = βkVk (2.23)

Hene the total volumetri �ux is given by the following

j =
n
∑

k=1

βkVk = βcVc + βdVd (2.24)

The drift veloity Vkj is the veloity of phase k relative to that of the volume enter of

the mixture and is given by the following [17℄ (see also [7, 15℄)

Vkj = Vk − j (2.25)

By using the above equation, the fourth relationship an be derived for phase c (as pre-
viously mentioned, phase c is the ontinuous phase, i.e. the matrix part of the overall

mixture):

Vcj = Vc − j = Vc − βcVc − βdVd = (1− βc)Vc − βdVd

= βdVc − βdVd = βdVr

(2.26)

By using Eq. (2.25), the �fth relationship an be derived for phase d (as previously men-

tioned, phase d is the dispersed phase, i.e. the suspended partiles):

Vdj = Vd − j = Vd − βcVc − βdVd = (1− βd)Vd − βcVc

= βcVd − βcVc = −βcVr

(2.27)

The above is the drift veloity of the dispersed phase. That is, the term Vdj represents

the veloity of the dispersed phase relative to that of the volume enter of the mixture

(see Eq. (2.25)).

The sixth relationship is as follows

βcVcj + βdVdj = 0 (2.28)

The proof of this relationship is given by Eq. (2.29), shown below:

βcVcj + βdVdj = βc(Vc − j) + βd(Vd − j) =
βcVc + βdVd − βcj− βdj = j− (βc + βd)j = j− j = 0

(2.29)

Rearrangement of Eq. (2.28) gives

Vdj = −βc

βd
Vcj (2.30)

From Eq. (2.22), the seventh relationship is obtained:

Vdm = −βcρc
ρm

Vr = −βcρc
ρm

(

−Vdj

βc

)

=
ρc
ρm

Vdj (2.31)
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In the above, the relation from Eq. (2.27) was used. Continuing further with Eq. (2.31),

the following an be obtained

Vdm =
ρc
ρm

Vdj =
ρc
ρm

(

−βc

βd
Vcj

)

= −βc

βd

ρc
ρm

Vcj (2.32)

In the above, the relation from Eq. (2.30) was used.

2.3.2 Mass Conservation of the Dispersed Phase

Using the mass onservation equation for the Two-Fluid Method Eq. (2.4), one an obtain

the mass onservation for both the ontinuous phase and the dispersed phase, namely with

∂βcρc
∂t

+∇ · (βcρcVc) = Γc, (2.33)

∂βdρd
∂t

+∇ · (βdρdVd) = Γd (2.34)

In this work, no mass formation or destrution is ourring (i.e. no phase hanges), mean-

ing Γc = Γd = 0 (see also [15℄ about a general assumption of this).

If the densities of the two phases are onstant, i.e. ρc = constant and ρd = constant,
one an simplify the above equations further

∂βc

∂t
+∇ · (βcVc) = 0 (2.35)

∂βd

∂t
+∇ · (βdVd) = 0 (2.36)

By adding Eqs. (2.35) and (2.36) and keeping in mind that βc + βd = 1 = constant (see
Eq. (2.12)), one obtains the following

∂(βc + βd)

∂t
+∇ · (βcVc + βdVd) = 0 +∇ · (βcVc + βdVd) = 0 (2.37)

By omparing the above result with Eq. (2.24), it beomes lear that the divergene of

the total volumetri �ux j is zero:

∇ · j = 0 (2.38)

It should be kept in mind that the above result is hinged on the above-mentioned on-

straints: ρc = constant and ρd = constant, whih are valid for the urrent work (see

Eq. (4.11), Page 33).

From the di�usion veloity for the dispersed phase Vdm, namely Eq. (2.18), with the

onomitant use of Eq. (2.31), the following is obtained

Vd = Vdm +Vm =
ρc
ρm

Vdj +Vm (2.39)
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Using the above in Eq. (2.34) gives

∂βdρd
∂t

+∇ ·
(

βdρd

[

ρc
ρm

Vdj +Vm

])

= 0 (2.40)

Likewise, using Eq. (2.39) in Eq. (2.36) results in

∂βd

∂t
+∇ · (βdVm) +∇ ·

(

βdρc
ρm

Vdj

)

= 0 (2.41)

2.3.3 Divergene of Veloity

From Eqs (2.14) and (2.24), the di�erene between the mixture veloity and total volu-

metri �ux is as follows

Vm − j =
βcρcVc + βdρdVd

ρm
− βcVc + βdVd (2.42)

The above an be evaluated further as shown with Eq. (2.43).

(Vm − j) ρm = βcρcVc + βdρdVd − βcρmVc − βdρmVd

= βcVc(ρc − ρm) + βdVd(ρd − ρm)
= βcVc(ρc − βcρc − βdρd) + βdVd(ρd − βcρc − βdρd)
= βcVc [ρc(1− βc)− βdρd] + βdVd [ρd(1− βd)− βcρc]
= βcVc [ρcβd − βdρd] + βdVd [ρdβc − βcρc]
= βcVcβd (ρc − ρd) + βdVdβc (ρd − ρc)
= βcVcβd (ρc − ρd)− βdVdβc (ρc − ρd)
= βcβd (ρc − ρd) (Vc −Vd)

(2.43)

In the third line, Eq. (2.13) was used (i.e. ρm = βcρc + βdρd), while in the �fth line,

Eq. (2.12) was used (i.e. βc + βd = 1). Using Eqs. (2.15) and (2.27), the above an be

further re�ned:

(Vm − j) ρm = βcβd (ρc − ρd)Vr = −βcβd (ρc − ρd)
Vdj

βc

= βd (ρd − ρc)Vdj (2.44)

Finally, rearranging the above, gives

Vm = j+ βd

(

ρd − ρc
ρm

)

Vdj (2.45)

Taking the divergene of Eq. (2.45) and keeping in mind the result of Eq. (2.38), namely

that ∇ · j = 0, the following is obtained

∇ ·Vm = ∇ ·
(

βd

[

ρd − ρc
ρm

]

Vdj

)

(2.46)

The above an also be expressed with the following

∇ ·Vm = ∇ ·R (2.47)

where the vetor R is de�ned with

R =

(

βd

[

ρd − ρc
ρm

]

Vdj

)

(2.48)
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2.3.4 Mixture Momentum Equation

From Eq. (2.10), the mixture momentum equation for eah phase k = c, d is given by

∂

∂t
(βcρcVc) +∇ · (βcρcVcVc) = ∇ · (βcσc) + βcρcg +Mc (2.49)

∂

∂t
(βdρdVd) +∇ · (βdρdVdVd) = ∇ · (βdσd) + βdρdg +Md (2.50)

The mixture momentum equation for the DFM is obtained by the summation of eah

part of Eqs. (2.49) and (2.50). Summarizing the �rst part and using Eq. (2.7) (Page 18)

gives

∂

∂t
(βcρcVc) +

∂

∂t
(βdρdVd) =

∂

∂t
(ρmVm) (2.51)

For the stress omponents, the following an be obtained by use of Eq. (2.11)

βc σc + βd σd = −(βc pc + βd pd) I+ (βc Tc + βd Td) = −pm I+Tm (2.52)

. . .meaning. . .

∇ · (βc σc) +∇ · (βd σd) = ∇ · (−pm I+Tm) = −∇pm +∇ ·Tm (2.53)

As shown in Eq. (2.52), the mixture pressure is given by pm = βcpc + βdpd (see [7℄). Also
shown there, the mixture extra stress tensor is given by Tm = βc Tc + βd Td (see [15℄).

In pratie, the phase pressures are often taken to be equal, i.e. pc = pd, meaning
pm = βcpc + βdpd = (βc + βd) pc = pc = pd. This assumption is onsidered to be valid

exept in the ase of expanding bubbles [18℄ (see also [15℄).

From Eq. (2.3) on Page 17, the following is obtained

βcρcg + βdρdg = ρmg (2.54)

By the summation of Eqs. (2.49) and (2.50) and thereafter using the results of Eqs. (2.51)

to (2.56) with Mc +Md = Mm, one an obtain the mixture momentum equation, given

by

∂

∂t
(ρmVm) +∇ · (βcρcVcVc + βdρdVdVd) = −∇pm +∇ ·Tm + ρmg +Mm (2.55)

In Eqs. (2.49) and (2.50), the termsMc andMd represents transfer of momentum from

one phase to the the other by phenomena suh as drag, lift or surfae tension e�ets [7℄.

By Newton's third law of motion (ation and reation), these e�ets are always opposite

and equal, meaning Mc = −Md. Thus, the overall e�et Mm = Mc + Md is always

summarized to zero and is therefore not of onern, something that is not possible for the

Two-Fluid Method (see Eq. (2.10)). That is, the following applies [19℄.

Mc +Md = Mm = 0 (2.56)
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In order to make Eq. (2.55) usable, the sum βcρcVcVc+βdρdVdVd has to be alulated

further. By applying the di�usion veloity of the phases, namely Eqs. (2.17) and (2.18),

one obtains Vc = Vm + Vcm and Vd = Vm + Vdm. By using these two relationships,

inluding Eqs. (2.3) and (2.19), the following is obtained

12

:

βcρcVcVc + βdρdVdVd = βcρc(Vm +Vcm)(Vm +Vcm)+
βdρd(Vm +Vdm)(Vm +Vdm) =
βcρc(VmVm +VmVcm +VcmVm +VcmVcm)+
βdρd(VmVm +VmVdm +VdmVm +VdmVdm) =
(βcρc + βdρd)VmVm +Vm(βcρcVcm + βdρdVdm) + (βcρcVcm + βdρdVdm)Vm+
βcρcVcmVcm + βdρdVdmVdm =
ρmVmVm +Vm · 0 + 0 ·Vm + βcρcVcmVcm + βdρdVdmVdm =
ρmVmVm +

∑n
k=1 βkρkVkmVkm

(2.57)

By rearranging terms in Eq. (2.19), Page 20, and thereafter using Eq. (2.31), Page 21,

the following is obtained

Vcm = −βdρd
βcρc

Vdm = −βdρd
βcρc

(

ρc
ρm

Vdj

)

= −βdρd
βcρm

Vdj (2.58)

By using Eqs. (2.31) and (2.58), the last part of Eq. (2.57) an be extrapolated further,

whih is done in Eq. (2.59).

βcρcVcmVcm + βdρdVdmVdm = βcρc

(

βdρd
βcρm

)2

VdjVdj + βdρd

(

ρc
ρm

)2

VdjVdj =
[

βcρc

(

βdρd
βcρm

)2

+ βdρd

(

ρc
ρm

)2
]

VdjVdj =
[

βcρcβ
2
d
ρ2
d

β2
cρ

2
m

+ βdρdρ
2
c

ρ2m

]

VdjVdj =
[

ρcβ
2
d
ρ2
d

βcρ2m
+ βdρdρ

2
c

ρ2m

]

VdjVdj =
βdρcρd
ρ2m

(

βdρd
βc

+ βcρc
βc

)

VdjVdj =

βdρcρd
ρ2m

(

βcρc+βdρd
βc

)

VdjVdj =
(

βdρcρd
ρ2m

ρm
1−βd

)

VdjVdj =
(

βd

1−βd

ρcρd
ρm

)

VdjVdj

(2.59)

In the above, the relationships by Eqs. (2.1) and (2.3) were also used.

By putting the results of Eqs. (2.56), (2.57) and (2.59) into Eq. (2.55), the �nal form

for the mixture momentum equation for the DFM is obtained

∂(ρmVm)

∂t
+∇·(ρmVmVm)+∇·

([

βd

1− βd

ρcρd
ρm

]

VdjVdj

)

= −∇pm+∇·Tm+ρmg (2.60)

12

Note that the tensor produt ⊗ is not used in this report. Rather, the same presentation method is

used as given by Mase [20℄ and Malvern [21℄. For example, in order to demonstrate the non-ommutative

behavior of a tensor produt (or outer produt) of two vetors, it would be shown as VmVcm 6= VcmVm

and not as Vm ⊗Vcm 6= Vcm ⊗Vm.
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Chapter 3

Volume of Fluid Method � VOF

3.1 Introdution

For the urrent work, it is important to divide the system between the atmospheri air

and the �uid mixture (e.g. fresh onrete). This is done with a so�alled free interfae.

Numerial methods that an manage suh division are lassi�ed into two groups depending

on the fundamental type of mesh used [22℄. These are moving mesh (Lagrangian mesh)

and �xed mesh (Eulerian mesh). Although the moving mesh approah allows a sharp

interfae de�nition it enounters serious problems in ases when the interfae undergoes

large deformations where the moving mesh may beome severely distorted [23℄. Beause

of this, the Eulerian mesh approah is preferred in many ases, like the volume-of-�uid [5℄,

the level set [22, 24℄ or the marker and ell [24℄ methods. In this work, the volume-of-�uid

method (VOF) is used and thus the text in this hapter refers to that spei� theory.

3.2 Fundamental Relations

Here, the volume fration (also, solid onentration or phase volume) of the �uid mixture

(e.g. fresh onrete) within eah omputational ell

13

is represented with α1, while the

volume fration of atmospheri air is represented with α2. More preisely, α1 = V1/VP,

where VP is the volume of the ell and V1 is the volume of onrete within the ell (i.e.

V1 ≤ VP). When α1 = 1, the omputational ell is �lled only with �uid mixture, while

if α1 = 0, the ell is �lled only with atmospheri air. For the interfae between air and

mixture, the following applies 0 < α1 < 1. In general, the value of α1 an range from 0

to 1. In this text, the �uid mixture (α1) will also have standard VOF designations like

14

phase 1 or �uid 1. The same applies for the atmospheri air (α2), i.e. phase 2 or �uid 2.

The mixed �uid's properties, density ρ and apparent visosity η, are weighted by the

13

The volume oupied by the system is divided into disrete ells. All these ells make up the mesh.

14

Relative to Setion 2.3.1, Page 19, then within phase 1, namely within the �uid mixture (e.g. fresh

onrete), the phase designations are phase  for the ontinuous phase (the matrix, e.g. mortar/mini

onrete) and phase d for the dispersed phase (the suspended partiles, e.g. oarse aggregates).
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volume frations α1 and α2 of the two �uids given by Eqs. (3.1) and (3.2) [25, 26℄

ρ = α1 ρ1 + α2 ρ2 (3.1)

η = α1 η1 + α2 η2 (3.2)

In eah and every omputational ell, the following is always valid

α1 + α2 = 1, (3.3)

meaning that if the quantity of phase 1 is known and given by α1, then so is the quantity

of phase 2 by α2 = 1− α1. This means that it is su�ient to alulate only the interfae

advetion for α1. This interfae is moved through the mesh and is aptured by a phase

transport equation. Relative to this spei� equation, the VOF an be divided between

two families, namely the diret methods and the reonstrution methods [25℄. For the latter

approah, the phase transport equation is approximated typially in two steps, �rst by

a geometri interfae reonstrution step and thereafter by an interfae propagation step

[25℄. Examples of suh approahes are the PLIC [27℄ and SLIC [28℄.

Unlike geometri interfae reonstrution methods, the diret methods do not intro-

due geometrial representation of the interfae, but rather try to maintain sharply de�ned

interfae by properly hosen disretization sheme, ommonly known as ompressive dif-

ferening sheme [29℄. Example of suh are the CICSAM [30, 31℄ and HRIC [32℄. Another

method, whih ould be onsidered to belong to the diret methods is the so-alled Weller-

sheme [33℄ (see also [19℄). However, instead of using ompressive di�erening sheme like

done in CICSAM, the ompression of the interfae is ahieved by applying an extra om-

pression term diretly into the phase transport equation [19, 24℄. This approah is used

here and thus explained below.

3.3 Veloity

In VOF, the mixed veloity U is generally given (or de�ned) with the following equation

[19, 23, 25, 33℄

U = α1U1 + α2U2 (3.4)

Instead of the above equation, one ould rather onsider of use the mixed veloity given

by Eq. (2.7) on Page 18. This would result in the following equation

U =
α1ρ1U1 + α2ρ2U2

α1ρ1 + α2ρ2
(3.5)

However, sine the VOF is about the treatment of immisible �uids (i.e. �uids that do

not generally intermix), the di�erene between Eqs. (3.4) and (3.5) is only present at the

thin interfae region, between phase 1 and 2, namely at 0 < α1 < 1. This is in ontrary

to the DFM in Chapter 2, whih is about the treatment of misible �uids (i.e. �uid that
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intermix), meaning that the di�erene between Eqs. (3.4) and (3.5) is more or less always

present everywhere in the �uid mixture.

Regardless of whih equation is onsidered more appropriate, Eq. (3.4) or Eq. (3.5), it

is important to note that exept for the short derivation below, neither are expliitly used

in VOF, meaning that the above-mentioned di�erene is not of paramount importane.

This beomes lear below Eq. (3.15), where it is explained how the mixed veloity U

is always solved as a single entity and not as presented with either of the two above

equations.

The relative veloity between the phases 1 and 2 when using Eq. (3.4) is given by

Eq. (3.6) (see also Eq. (2.15), Page 20, for the ase of DFM).

Ur = U1 −U2 (3.6)

When using Eq. (3.5), the above equation has to be de�ned in a di�erent manner, as

disussed in Footnote 15.

In the solver interFoam, the relative veloity Ur is used to ompress the interfae

between phase 1 and 2 (i.e. at 0 < α1 < 1). However, sine neither U1 nor U2 are

atually resolved in VOF, Ur is not alulated as nominally de�ned in Eq. (3.6). It is

rather alulated by a semi-empirial formula as shown in the soure ode alphaEqn.H

through the �eld variable phir = φr = Ur · S, where the term S is the fae area vetor

[34℄ (see also Footnote 22 about the vetor diretion of S.).

3.4 Phase Transport Equation

The transport equation of eah volume fration α1 and α2 in a ompressible two��uid VOF

system an be extrated from the Two-Fluid Method in Setion 2.2, or more preisely from

Eq. (2.4), Page 17. In terms of VOF quantities (e.g. βk → αi, ρk → ρi and Vk → Ui), as

well as putting Γi = 0, where i = 1, 2, the following is obtained

∂(αi ρi)

∂t
+∇ · (αi ρiUi) = 0 (3.7)

From the above equation, the transport equation in a inompressible two��uid VOF

system (i.e. ρi = constant) beomes as follows, where i = 1, 2 (see also [25℄)

∂αi

∂t
+∇ · (αiUi) = 0 (3.8)

However, with α2 = 1−α1 (.f. Eq. (3.3)), it is su�ient to onsider the transport equation

of α1 only. Therefore, with i = 1, Eq. (3.8) gives

∂α1

∂t
+∇ · (α1U1) = 0 (3.9)

To solve this transport equation, the veloity of phase 1 is needed, namely U1. In the

muh used original VOF method by Hirt and Nihols [5℄, the veloity U1 is assumed to
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be equal to the mixed veloity U [5, 25℄. This is only valid if α1 is maintained as a step

funtion throughout the domain, for example, numerial di�usion at the interfae is not

allowed [25℄.

By using the veloity U given by Eq. (3.4) and multiply it with α1 as well as applying

Eq. (3.3), the following is obtained

α1U = α2
1U1 + α1(1− α1)U2 (3.10)

Furthermore, by multiplying Eq. (3.6) with α1(1− α1), one obtains:

α1(1− α1)Ur = α1(1− α1) (U1 −U2) (3.11)

By adding Eq. (3.10) and Eq. (3.11) together, it an be shown after few steps

15

that [25℄

α1U1 = α1U+Ur α1 (1− α1), (3.12)

. . .or equally. . .

U1 = U+Ur (1− α1) (3.13)

With the above result, Eq. (3.9) an be onverted to Eq. (3.14).

∂α1

∂t
+∇ · (α1U) +∇ · (Ur α1 (1− α1)) = 0 (3.14)

With the multipliation term α1 (1 − α1), the ompression term Ur α1 (1 − α1) is only
ative in the thin interfae region, between the �uid mixture and the atmospheri air

0 < α1 < 1.
One of the ritial issues with Eq. (3.14) is the disretization of the advetion term

∇ · (α1U). Lower order shemes like the �rst order upwind method smear the interfae

due to numerial di�usion and higher order shemes are unstable, resulting in numeri-

al osillations [24℄. Thus, it is neessary to apply speial advetion shemes that an

ontribute to a sharper interfae and produe better monotoni pro�les of the volume

fration α1 [24℄. To do this, the Flux Correted Transport tehnique (FCT) is applied,

whih was introdued by Boris and Book [35℄ and later enhaned by Zalesak [36℄. Open-

FOAM implementation of FCT is named MULES (Multidimensional Universal Limiter

for Expliit Solution) [16℄. It is based on a similar onept relative to Zalesak's limiter λ,
but its determination is iterative [16℄.

The FCT an be onsidered to be a ompressive di�erening sheme and thus has been

used on Eq. (3.9), with U1 = U, to maintain a sharp interfae [24℄. Therefore, with the

speial ompression term in Eq. (3.14) (i.e. by Ur) and with the use of MULES (i.e. FCT),

a double ompression is atually being applied in the last-mentioned equation. Here, the

FCT is applied on both advetion terms in Eq. (3.14).

15

Using the same proedure with Eq. (3.5) and de�ning the relative veloity between phases with the

following ρUr = ρ1U1 − ρ2U2, one obtains α1ρ1U1 = α1ρU + Ur ρα1 (1 − α1) in the end. Using this

equation instead of Eq. (3.12), in Eq. (3.7) did not give any bene�ial outome for the tested simulations.
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3.5 Governing Equation

For non-Newtonian �uids, like what applies to ement based materials, the governing

equation is the Cauhy equation of motion, given by Eq. (3.15) [20, 21℄. Being a �parent�

of the Navier�Stokes equations, the Cauhy equation is also fully valid for Newtonian

�uids like the atmospheri air.

∂(ρU)

∂t
+∇ · (ρUU) = −∇p +∇ ·T+ ρ g + Fs (3.15)

Sine the VOF method is a single pressure system [23℄, the pressure p in Eq. (3.15) is not

alulated separately for eah of the phases α1 and α2 (i.e. for onrete and air). The same

applies for the veloity U, whih is stritly speaking given by Eq. (3.4) (or by Eq. (3.5),

depending on preferene). That is, the mixed veloity U is solved as a single entity by

Eq. (3.15). The density ρ in Eq. (3.15) is given by Eq. (3.1), the term t represents the time
and g is the gravity. The term Fs is the fore by surfae tension between the two phases

α1 and α2 (e.g. fresh onrete and atmospheri air), and is alulated in aordane with

the Continuum-Surfae-Fore (CSF) model of Brakbill et al. [37℄. The above terms will

be further disussed in Setion 4.8. The extra stress tensor T is explained in Setion 3.6.

3.6 Constitutive Equation

The onstitutive equation onsists of the Generalized Newtonian Model [38℄, or in short

GNM and is given by T = 2 η ε̇ [2℄. The term ε̇ = 1
2
(∇U + (∇U)T) is known as the

rate�of�deformation tensor [20, 21, 39℄. Here, the apparent visosity η by is given by

Eq. (3.2), in whih the �uid mixture (or phase 1, e.g. fresh onrete) is rheologially

modeled through η1, while the atmospheri air (i.e. phase 2) is always set as a Newtonian
�uid η2 = constant. The omputational implementation of η1 into the soure ode is by

the regularization approah [3, 40, 41, 42, 43, 44, 45, 46℄. See also Setion 5.2, Page 50,

for further information about the regularization approah.
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Chapter 4

Combining DFM with VOF

4.1 Introdution

This hapter deals with ombining the theories of the Drift Flux Model, or DFM (Chap-

ter 2) and the Volume of Fluid Method, or VOF (Chapter 3). That is, this hapter

represents the basis for the vvpfFoam solver. As a short lari�ation, the VOF takles

the treatment of immisible �uids (i.e. �uids that do not intermix), while DFM takles

the treatment of misible �uids (i.e. �uid that intermix). In addition to this, the DFM

has the apability to allow slip between phases (see Setion 2.3.1, Page 19). This is an

important aspet to allow the �uid mixture to segregate by gravitational settling and/or

by other means, like by the shear (rate) indued partile migration.

4.2 The Mixture of Phase 1

In Chapter 3, the phase 1 (i.e. the �uid mixture) and phase 2 (e.g. atmospheri air) were

treated by the VOF. To reiterate, the volume fration of phase 1 within eah omputa-

tional ell is represented with α1, while the volume fration of phase 2 is represented with

α2. More preisely, α1 = V1/VP, where VP is the volume of the omputational ell and

V1 is the volume of mixture (e.g. fresh onrete) within the ell (i.e. V1 ≤ VP). Likewise,

α2 = V2/VP, where V2 is the volume of atmospheri air within the same ell (i.e. V2 ≤ VP),

as shown in Fig. 4.1.

Figure 4.1: The division of a omputational ell between phase 2 (atmospheri air) and

phase 1 (mixture). The latter is further divided between the dispersed phase d and the

ontinuous phase c.
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Sine phase 1 will be treated with the DFM as desribed in Chapter 2, the main

subsript of that hapter, namely m for �mixture� (e.g. Vm for mixture volume) will also

have the subsript 1, in aordane with the sheme of VOF in Chapter 3 (e.g. V1 for the

volume of phase 1). This means that the mixture mass mm is also the mass of phase 1,

namely m1, the mixture veloity Vm is also the veloity of phase 1, whih is designated

with U1 in Chapter 3. That is, Vm ≡ V1, mm ≡ m1, Vm ≡ U1, ρm ≡ ρ1, and so forth.

4.3 Fundamental Relations

As indiated above, phase 1 will onsist of two phases, namely the ontinuous phase, or

phase  (i.e. the matrix) and the dispersed phase, or phase d (i.e. suspended partiles).

As explained in Chapter 2, their orresponding volume frations are represented with βc

and βd. More preisely, from Eq. (2.12), Page 19, then βc = Vc/Vm and βd = Vd/Vm, in

whih Vm ≡ V1, .f. Setion 4.2. The term Vc is the volume of the ontinuous phase within

the ell (i.e. Vc ≤ V1 ≤ VP) and Vd is the volume of the dispersed phase within the ell

(i.e. Vd ≤ V1 ≤ VP).

Summarizing the fundamental relations for α1 and α2 (from Chapter 3):

VP = V1 + V2 ∧ α1 =
V1

VP
∧ α2 =

V2

VP
(4.1)

α1 + α2 =
V1

VP
+

V2

VP
=

V1 + V2

VP
=

VP

VP
= 1 (4.2)

Summarizing the fundamental relations for βc and βd (from Chapter 2):

Vm ≡ V1 = Vc + Vd ∧ βc =
Vc

V1
∧ βd =

Vd

V1
(4.3)

βd + βc =
Vd

V1
+

Vc

V1
=

Vd + Vc

V1
=

V1

V1
= 1 (4.4)

Beause of the ombination of VOF with DFM, additional de�nitions are needed for the

ontinuous phase (i.e. phase c) and the dispersed phase (i.e. phase d). These are αc and

αd, representing the volume frations relative to the volume of a ell VP, given by

αc = Vc/VP ∧ αd = Vd/VP (4.5)

The sum of these two new quantities is equal to the volume fration of the mixture,

namely

αc + αd =
Vc

VP
+

Vd

VP
=

Vc + Vd

VP
=

V1

VP
= α1 (4.6)

Repeating the outome of Eqs. (4.2), (4.4) and (4.6), gives:

α1 + α2 = 1 ∧ βd + βc = 1 ∧ αd + αc = α1 (4.7)
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Finally, the relationship between the two quantities βd = Vd/V1 and αd = Vd/VP is as

follows

βd =
Vd

V1
=

VP

VP

Vd

V1
=

VP

V1

Vd

VP
=

1

α1
αd (4.8)

The same an be onluded for the ontinuous phase, meaning βc = αc/α1.

4.4 Mass and Density

The term mP represents the total mass of materials inside a single omputational ell and

is equal tom1+m2. The termm1 represents the mass of phase 1 (i.e. mixture) within eah

omputational ell, while the term m2 represents the mass of phase 2 (i.e. atmospheri

air) within the same ell.

The mass of phase 1, namely m1, is equal to mc + md. The term mc represents the

mass of phase  (i.e. matrix) within the above-mentioned omputational ell, while the

term md represents the mass of phase d (i.e. suspended partiles) within the same ell.

Summarizing the above:

mP = m1 +m2 ∧ m1 = mc +md (4.9)

The term ρ1 is the density of phase 1, while the term ρ2 represents the density of phase

2:

ρ1 =
m1

V1
≡ mm

Vm
= ρm (Mixture) ∧ ρ2 =

m2

V2
= constant (Air) (4.10)

In the above, the following were used mm ≡ m1 and Vm ≡ V1, .f. Setion 4.2.

The term ρc is the density of phase  (matrix), while the term ρd represents the density
of phase d (suspended partiles):

ρc =
mc

Vc
= constant ∧ ρd =

md

Vc
= constant (4.11)

A typial density value for the oarse aggregates is ρd = 2700 kg/m3
(dispersed phase),

while ρc = 2200 kg/m3
for the mortar/mini onrete (ontinuous phase).

In this work, the term ρ represents the total density of the ell (that is, inluding both
mixture and atmospheri air), given by

ρ =
mP

VP
=

m1 +m2

VP
=

m1

VP
+

m2

VP
=

m1

VP

V1

V1
+

m2

VP

V2

V2
=

=
V1

VP

m1

V1
+

V2

VP

m2

V2
= α1 ρ1 + α2 ρ2

(4.12)

The above result orresponds to Eq. (3.1). Likewise, the density of phase 1 (e.g. of the

fresh onrete), an be alulated by

ρ1 =
m1

V1
=

md +mc

VP α1
=

Vd ρd + Vc ρc
VP α1

=
(Vd/VP) ρd + (Vc/VP) ρc

α1

=
αd ρd + αc ρc

α1
=

αd ρd + (α1 − αd) ρc
α1

(4.13)
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An alternative method of alulating the density of phase 1 is by

ρ1 =
αd ρd + αc ρc

α1
=

V1

V1

Vd

VP
ρd +

V1

V1

Vc

VP
ρc

α1
=

Vd

V1

V1

VP
ρd +

Vc

V1

V1

VP
ρc

α1

=

Vd

V1
α1 ρd +

Vc

V1
α1 ρc

α1
= βd ρd + βc ρc = βd ρd + (1− βd) ρc

(4.14)

In the above derivations, Eqs. (4.1) to (4.7) were used.

4.5 Mass Conservation of the Dispersed Phase

4.5.1 Original State of Equation

The mass onservation of the dispersed phase, phase d, was derived in Setion 2.3.2,

Page 22, and is reprodued below (see Eq. (2.41)):

∂βd

∂t
+∇ · (βdU1) +∇ ·

(

βdρc
ρm

Vdj

)

= 0 (4.15)

In the above, the mixture veloity Vm is replaed by the veloity of phase 1, namely

by U1 (see Setion 4.2). Moreover, by using Eq. (3.13), Page 29, the above equation is

onverted into the following

∂βd

∂t
+∇ · (βdU+ βd

ρc
ρ1

Vdj) +∇ · (Ur βd (1− α1)) = 0 (4.16)

The problem with the term �Ur βd (1−α1)� in the above equation, is that βd is a variable

that is in general not at its minimum (e.g. 0) nor maximum (e.g. 0.4) value. That is, it

an (and should be) in any range between the two extremes anywhere in the mixture and

this inludes the interfae. With this property, this term annot ontribute to interfae

ompression. This is ontrary to the variable α1 whih is fundamentally either equal to 0

or 1 and means that the traditional interFoam�term �Ur α1 (1 − α1)� is at maximum at

the surfae and thus an ontribute to interfae ompression. But the problem is that this

term will serve as an arti�ial soure/sink inside Eq. (4.16) and thus annot be used as

is. To solve this, an empirial modi�ation of the term �Ur βd (1− α1)� is rather applied,
in whih the term βd is replaed with ξd = ξd(α1, αd). More preisely, the following

onversion is done in Eq. (4.16)

Ur βd (1− α1) ⇒ Ur ξd (1− α1) (4.17)

At the time of writing, the funtion ξd has the following form

ξd(α1, αd) =
α1 αd

αMAX
d

(4.18)

The above funtion is based on trial and error, with the onstraint to obtain good interfae

ompression and also with emphasis on obtaining the best mass onservation. At present,

the same interfae ompression veloity Ur is used in Eq. (4.17) as in Eq. (3.14), Page 29.
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4.5.2 Dispersed Phase Relative to VP

With Eqs. (4.8) and (4.17), Eq. (4.16) is transformed into the following

∂(αd/α1)

∂t
+∇ · (αd

α1
U+

αd

α1

ρc
ρ1

Vdj) +∇ · (Ur ξd (1− α1)) = 0 (4.19)

With Eq. (4.19), the variable αd (whih is relative to the volume of the ell VP) is solved

and not the variable βd (whih is relative to the volume of phase 1, namely V1).

In this work, attempt has been made to solve Eq. (4.19) for αd, while keeping α1 on-

stant at a value from the previous iteration. The solver does run, but mass onservations

are not kept. Beause of this, a hanged version of Eq. (4.19) is rather used, obtained by

�xing α1 to 1. This modi�ed version

16

is shown below:

∂αd

∂t
+∇ · (αdU+ αd

ρc
ρ1

Vdj) +∇ · (Ur ξd (1− α1)) = 0 (4.20)

The term �Ur ξd (1−α1)� ats to some extent as a soure/sink, and thus is responsible for
arti�ial hanges in quantity of αd. In general, with more abrupt hanges in the �ow U,

the larger variation of Ur beomes, ontributing to a larger soure �∇ · (Ur ξd (1 − α1))�
(see Figs. 1.11 and 1.13, Page 12).

If the term �Ur ξd (1−α1)� is omitted in Eq. (4.20), a better onservation is obtained.

However, without it, then for volatile/plunging �ow like shown in Fig 1.3, Page 4, the term

αd an push through the interfae, appearing to evaporate and �oat in the atmospheri

air (the ode shown later in Setion 4.7 is also meant to assist in avoiding this for the ase

of suh abrupt �ow).

It should be lear that Eq. (4.20) is orret within the phase 1 �uid, where α1 = 1
(i.e. is idential to Eq. (4.19) for suh a ase). However, at the interfae between the

atmospheri air (phase 2) and the mixture �uid (phase 1), namely at 0 < α1 < 1, it
beomes theoretially less orret, whih ould introdue a slight error in the simulation.

4.5.3 Dispersed Phase Relative to V1 or VP

It should be lear that an extensive

17

ell based variable (i.e. a variable alulated at a

nodal point P) is relative to the ell volume VP (unless a speial treatment is applied to

it). Thus, with the attempt to solve for βd through Eq. (4.16), one would atually solve

for αd with that exat same equation. This is beause the former variable is relative to

V1, while the latter variable is relative to VP, a normalization that is native to FVM. In

Chapter 2, when only treating the DFM, the mixture volume V1 ≡ Vm is always equal to

the ell volume VP, making the above disussion irrelevant.

16

In the �le alphaDEqn.H, a soure term Sp αd + Su is added to the right side of Eq. (4.20), in whih

both Sp and Su are set equal to zero (units of Sp and Su are [s−1
℄).

17

An extensive variable is one whose magnitude is dependent of the size of the system (examples:

volume, mass, heat apaity). An intensive variable is one whose magnitude is independent of the size of

the system (examples: temperature, pressure, spei� heat apaity).
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The reason for going through the steps of generating Eq. (4.19) and thereafter trans-

forming it to Eq. (4.20), is out of neessity to maintain onservation of the quantity of the

dispersed phase (i.e. keeping it more or less onstant throughout the simulation). This

also helps to understand the (neessary) physial error involved in the solver vvpfFoam.

4.6 Phase Transport Equation

The transport equation of eah volume fration α1 and α2 an be extrated from Eq. (3.7)

in Setion 3.4 and is reprodued below:

∂(αi ρi)

∂t
+∇ · (αi ρiUi) = 0 (4.21)

As mentioned in Setion 3.4, with α2 = 1 − α1, it is su�ient to onsider the transport

equation of α1 only and as suh, only applying i = 1 to Eq. (4.21), results in

∂(α1 ρ1)

∂t
+∇ · (α1 ρ1U1) = 0 (4.22)

Furthermore, by applying Eq. (3.12), the following is obtained

∂(α1 ρ1)

∂t
+∇ · (α1 ρ1U) +∇ · (Ur ρ1 α1 (1− α1)) = 0 (4.23)

The above equation is solved

18

in alpha1EqnRho.H. By applying it, there emerges a slight

volume hange in phase 1, say 0.3% or so, during a typial simulation run (see Figs. 1.11

and 1.13, Page 12). If this is unaeptable, the user an rather use alpha1Eqn.H, whih

returns better onservation. However, that �le solves Eq. (4.23) with ρ1 = constant, whih
is not in aordane with Eq. (4.13).

It should be lear that there is no di�erene visually observable in the overall �ow, when

omparing the use of alpha1Eqn.H with the use of alpha1EqnRho.H. An example of this

is shown in Fig. 4.2, whih demonstrates the �ake break� �ow through pillars obstales

(see Setion 1.4.1 on Page 5, about the ase setup). The simulation is split into two parts,

in whih the left part (green) is solved by Eq. (4.23) as is (i.e. with alpha1EqnRho.H),

while the right part (white) is solved with the same equation however with ρ1 = constant
(i.e. with alpha1Eqn.H). As shown, the left (green) and the right (white) part meet at

the enter, exatly. The overall volume hange for phase 1 (i.e. of α1) is less than 0.2%

for the left simulation, while 0% for the right simulation. In these two simulations, no

di�erene is observed in αd = αd(x, y, z, t), solved by Eq. (4.20) (as well as none in terms

of βd = αd/α1 by Eq. (4.8)). The total simulation time is 30 s, whih means �Time index:

300� relative to Fig. 4.2.

Whihever soure is used, the hange is made in the �le maroDefinitions.H, set

by the maro de�nition ALPHA1RHO_SOLVE. If de�ned, then alpha1EqnRho.H is used, and

if not, alpha1Eqn.H is used instead. Unless otherwise stated, the results shown in this

report are based on use of alpha1EqnRho.H.

18

In the �le alpha1EqnRho.H, a soure term Sp α1+Su is added to the right side of Eq. (4.23), in whih

both Sp and Su are set equal to zero (units of Sp and Su are [kg ·m−3 · s−1
℄).
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Figure 4.2: Simulation of a �ake break� �ow through pillars obstales (see also Fig. 1.4).

The left part (green) is solved with alpha1EqnRho.H, while the right part (white) is solved

with alpha1Eqn.H.

4.7 Visualization of βd Relative to VP

When looking at the transport equation of phase 1, namely Eq. (4.23), it is lear that α1

is moved (i.e. onveted) by the veloity U. But, when looking at the transport equation

of the dispersed phase, namely Eq. (4.20), its quantity αd is not onveted by U alone,

but rather by the sum U + (ρc/ρ1)Vdj. Usually, the onvetion is almost the same in

both ases of α1 and αd sine generally U ≈ U + (ρc/ρ1)Vdj. But in some part of the

�ow, the di�erene between U and U+(ρc/ρ1)Vdj an be suh that the variables αd and

α1 propagate di�erently. Although the onsequene of this for either α1 or αd is none

19

,

the e�et of this for βd = αd/α1 (Eq. (4.8), Page 33) is that it an reah an abnormal

high value. This applies espeially near/at the interfae, where the variation in α1 is

greatest. This an also apply where the di�erene between U and U+(ρc/ρ1)Vdj is high,

as a onsequene of a new additional interfae ompression sheme used for the dispersed

phase αd (beyond what is explained in Setion 4.5.2). This new interfae ompression is

implemented in driftVeloity.H and gravitySegregation.H and is as follows:

volVetorField gradAlpha1(fv::grad(alpha1));

surfaeVetorField gradAlpha1f(fv::interpolate(gradAlpha1));

surfaeVetorField interfaeNormal(gradAlpha1f/(mag(gradAlpha1f) + deltaN));

forAll(alpha1.internalField(), elli)

{

if

(

alpha1[elli℄ > lowerCrit.value()

&& alpha1[elli℄ < upperCrit.value()

&& alphaD[elli℄ > riteriaD.value()

)

{

VdjGR[elli℄ = (1.0 - alpha1[elli℄)*0.2100*interfaeNormal[elli℄;

19

Both αd and α1 have their own partial di�erential equation, namely Eqs. (4.20) and (4.23), that an

in a sense operate independent of eah other.
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}

else if (alpha1[elli℄ <= lowerCrit.value())

{

VdjGR[elli℄ = (1.0 - alpha1[elli℄)*0.0306*g.value();

}

}

Convetion by U from a ell depleted of α1 into a neighboring ell, with the on-

omitant onvetion by U + (ρc/ρ1)Vdj, from an another ell full of αd, into the same

neighboring ell, results in build up of βd = αd/α1. This partiular build up has mostly

no onsequene other than being visually annoying (i.e. sine βd is alulated and not

solved by a partial di�erential equation, as applies for α1 and αd).

An example of the above-mentioned properties of βd is shown in Fig. 4.3, marked with

a green square. For this ell, the volume fration of phase 1 is α1 = 0.5, while the volume
fration of the dispersed phase is αd = 0.2. This results in too high value of βd = 0.4
shown in the �gure, whih might be inorretly understood as mass generation at the

interfae.

Figure 4.3: Example of βd (a), αd (b) and α1 () distribution of the same ase.

To avoid singularity in the ode UEqn.H, the alulation of βd/(1− βd) is performed,
as opposed to αd/(α1 − αd), and the above-mentioned behavior of βd might disturb the

simulation somewhat at the interfae between atmospheri air and mixture. The relevant

part of the UEqn.H ode is as follows (see also Eq. (4.33)):

volSalarField alphaDrho1Ratio

(

"alphaDrho1Ratio",

(betaD/(salar(1) - betaD))*((rhoC*rhoD)/rho1)

// (alphaD/((alpha1 + delta) - alphaD))*((rhoC*rhoD)/rho1)

);

4.8 Governing Equation

4.8.1 Momentum Equation for Phases 1 and 2 (VOF)

The governing equation for the ombined system of phases 1 (mixture) and 2 (atmospheri

air) is solved by the VOF, given by Eq. (3.15), Page 30, and reprodued below:

∂(ρU)

∂t
+∇ · (ρUU) = −∇p +∇ ·T+ ρ g + Fs (4.24)
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As mentioned in Chapter 3, the mixed �uid's properties, density ρ and apparent visosity

η, are weighted by the volume frations α1 and α2 [25, 26℄. These were given by Eqs. (3.1),

(3.2) and (3.4), and are reprodued below

20

:

ρ = α1 ρ1 + α2 ρ2 (4.25)

η = α1 η1 + α2 η2 (4.26)

U = α1U1 + α2U2 (4.27)

With the extra stress tensor T = 2 η ε̇ and the rate�of�deformation tensor ε̇ = 1
2
(∇U +

(∇U)T) (see Setion 3.6), ombined with Eqs. (4.26) and (4.27), at α1 = 1 (i.e. inside the
phase 1 �uid), the following is obtained

T = α1T1 = 2 η1 ε̇1 = 2 η1

[

1

2
(∇U1 + (∇U1)

T)

]

(4.28)

Furthermore, inside the mixture �uid, the pressure an be designated with p1, meaning

p|α1=1 = p1 (4.29)

Finally, the term Fs is the fore by surfae tension between the two phases α1 and α2 [37℄,

and is thus only ative at the thin interfae region, namely at 0 < α1 < 1. That is, inside
phase 1 at α1 = 1, then Fs = 0.

Fs|α1=1 = 0 (4.30)

With Eqs. (4.25) to (4.30) at α1 = 1 (i.e. inside the phase 1 �uid), Eq. (4.24) is transformed
into the following

∂(ρ1U1)

∂t
+∇ · (ρ1U1U1) = −∇p1 +∇ ·T1 + ρ1 g (4.31)

The above is the governing equation that is valid inside the phase 1 �uid (α1 = 1) relative
to the VOF method.

4.8.2 Momentum Equation for Phase 1 (DFM)

The governing equation that is valid inside the phase 1 �uid (α1 = 1) relative to the DFM
method is given by Eq. (2.60), Page 25, and reprodued below:

∂(ρ1U1)

∂t
+∇· (ρ1U1U1)+∇·

([

βd

1− βd

ρcρd
ρ1

]

VdjVdj

)

= −∇p1+∇·T1+ρ1g (4.32)

In the above, the mixture veloity Vm has been replaed with the veloity of phase 1,

namely with U1 and the mixture density ρm with ρ1. Also, the extra stress tensor Tm

has been replaed with T1 and mixture pressure pm with p1. All these hanges are in

aordane with Setion 4.2.

20

In relation to the veloity U, see also the text in Setions 3.3 and 3.5, Page 27.
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4.8.3 Momentum Equation for Phases 1 and 2 (VOF & DFM)

It should be lear that Eq. (4.31) is part of Eq. (4.24). The latter equation applies to the

ombined system of phase 1 and 2 �uids, while the former applies only for the phase 1

�uid. Moreover, with Eq. (4.31) (and thus Eq. (4.24)), the phase 1 �uid annot segregate,

meaning that slippage between phase  and phase d annot our inside it.

By omparison of Eq. (4.31) (whih is a part of Eq. (4.24)) with Eq. (4.32), it an be

suggested that the omponent needed in Eq. (4.24), to allow for slippage between phase

 and phase d, is given by the following

∇ ·
([

βd

1− βd

ρcρd
ρ1

]

VdjVdj

)

= ∇ ·
([

αd

α1 − αd

ρcρd
ρ1

]

VdjVdj

)

(4.33)

Inluding Eq. (4.33) into the left side of Eq. (4.24), results in the following

∂(ρU)

∂t
+∇ · (ρUU) +∇ ·

([

βd

1− βd

ρcρd
ρ1

]

VdjVdj

)

= −∇p+∇ ·T+ ρ g+Fs (4.34)

Beause βd = 0 ∧ αd = 0 when α1 = 0, Eq. (4.34) returns to Eq. (4.24) in phase 2 (i.e. in

the atmospheri air). Furthermore, for α1 = 1 (i.e. inside the mixture), Eq. (4.34) returns
to Eq. (4.32) (keeping Eqs. (4.29) and (4.30) in mind).

Modi�ed Pressure

Here, the (total) pressure p is substituted by a modi�ed version of it, namely by p_rgh.
The impliations and bene�ts of the modi�ed pressure p_rgh is well explained in [19, 23,

25℄. The relationship between p and p_rgh is given by

p = p_rgh + ρg · x + pRef (4.35)

The term pRef is a (onstant) referene pressure, often set equal to zero and the term

x = xkik = xxix + xyiy + xziz is the vetor loation of a �uid partile in the system. The

philosophial understanding of the term x relative to a �uid partile (also, ontinuum

partile) is well desribed in [3℄ in Chapter 2, entitled Desription of Fluid. Applying the

gradient operator on Eq. (4.35), gives the following

−∇p = −∇(p_rgh + ρg · x + pRef) = −∇p_rgh−∇(ρg · x). (4.36)

To alulate the last term in the above equation, one an use indiial notation, with

summation onvention [20, 21, 39℄ (see also Footnote 12, Page 25). Here, k and p are the

running indies (i.e. k = x,y,z or 1,2,3), where x, y and z (or, 1, 2 and 3) are the spei�

Cartesian oordinates. The term ik is the unit vetor in the diretion of k.

∇(g · x ρ) = iz
∂

∂xz
(gkik · xpip ρ) =

(

iz
∂

∂xz
(gkik)

)

· xpip ρ+ gkik ·
(

iz
∂

∂xz
(xpip)

)

ρ+ gkik · xpip iz
∂ρ

∂xz
=

= ∇g · x ρ+ g · ∇x ρ+ g · x∇ρ = g · ∇x ρ+ g · x∇ρ

(4.37)
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In the above last line, the term ∇g is zero, sine the gravity g is a onstant. Going further

with the above and using the Kroneker delta

21

:

g · ∇x = gkik · ∂xp

∂xz
izip = gk(ik · iz)∂xp

∂xz
ip = gkδkz

∂xp

∂xz
ip =

gk
∂xp

∂xk
ip = gkδpkip = gkik = g

(4.38)

Thus, from Eqs. (4.37) and (4.38), the following onlusion an be obtained

∇(ρg · x) = g ρ+ g · x∇ρ. (4.39)

Finally, by using the above result in Eq. (4.36) the following is arrived at

−∇p = −∇p_rgh− ρg− g · x∇ρ. (4.40)

Surfae Tension Fore

To aount for the surfae tension between the atmospheri air and mixture, the Continuum-

Surfae-Fore (CSF) model of Brakbill is used [37℄ (see also [26, 30℄). Brakbill inter-

preted the surfae tension as a ontinuous, three-dimensional e�et aross an interfae. In

this approah, the interfae is neither traked expliitly nor are shape or loation known

[26℄. Therefore, an exat boundary ondition annot be applied to the interfae [26℄. The

surfae tension fore that applies for the CSF model is given by

Fs = σ κ∇α1 (4.41)

The terms σ and κ are the surfae tension and the urvature of the interfae, respetively.

Final Governing Equation

Now, using Eqs. (4.40) and (4.41) in Eq. (4.34), the following emerges

∂(ρU)
∂t

+∇ · (ρUU) +∇ ·
([

βd

1−βd

ρcρd
ρ1

]

VdjVdj

)

=

−∇p_rgh +∇ ·T− g · x∇ρ+ σ κ∇α1

(4.42)

Inluding Single Referene Frame (SRF)

If needed, the so�alled single referene frame (SRF) approah [47℄ an be ativated. This

is done by unommenting the line #define SINGLE_REFERENCE_FRAME in the soure �le

maroDefinitions.H and thereafter reompile the solver. When taking this step, the

omputational domain represents no longer an inertial referene frame [48℄. With this,

the Coriolis fore Fcor = 2 ρω×U and the entrifugal fore Fcen = ρω× (ω×x) have to
be inluded into the governing equation [48℄ as shown below

∂(ρU)
∂t

+∇ · (ρUU) +∇ ·
([

βd

1−βd

ρcρd
ρ1

]

VdjVdj

)

+ Fcor + Fcen =

−∇p_rgh +∇ ·T− g · x∇ρ+ σ κ∇α1

(4.43)

21

The Kroneker delta is written as δij where δij = 1 if i = j and δij = 0 if i 6= j [20℄.
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Exept for the angular veloity ω [rad/s℄, all variables (i.e. α1, γ̇, U, p_rgh and et.)

are relative to the non�inertial (i.e. rotating) referene. Salar equations like Eqs. (4.20)

and (4.23) remains unhanged [48℄ in this framework. Furthermore, salar quantities like

ρ, α1, αd, γ̇ or p_rgh appear the same in inertial and non�inertial referene frames, as

does their material derivative [48℄. However, for a vetor quantity like the veloity U, the

transformation between the two referene frames isUin = U+ω×x, where Uin is the iner-

tial veloity [48℄. The transformation is done in the soure ode enableFieldControl.H,

as shown with the following ode:

#ifdef SINGLE_REFERENCE_FRAME

Uin = U + (Omega ^ mesh.C());

#endif

Governing Equation in a Semi-Disretized Form

Writing Eq. (4.42)/(4.43) in a semi-disretized form at the nodal point P of a omputa-

tional ell, results in

aPUP = H(U)−∇p_rgh− g · x∇ρ+ σ κ∇α1 (4.44)

As indiated, the term UP is the veloity at the nodal point. The vetor H(U) inludes
everything on the left side (i.e. on the �rst line) of Eq. (4.42) exept for any terms

ontaining veloity of the urrent time step, loated on the diagonal of the array generated

by fvVetorMatrix UEqn(). However, H(U) does inlude UP from previous time step,

namely Uold
P (i.e. from ∂(ρU)/∂t ≈ (ρPUP − ρoldP Uold

P )/∆t, or similar).
Isolating UP in Eq. (4.44) results in the following equation

UP =
H(U)

aP
− ∇p_rgh

aP
− g · x∇ρ

aP
+

σ κ∇α1

aP
(4.45)

4.9 Pressure Equation

4.9.1 Continuity Equation

In aordane with Eq. (2.9), the ombined ontinuity equation for the mixture and

atmospheri air is as follows

∂ρ

∂t
+∇ · (ρU) =

∂ρ

∂t
+U · ∇ρ+ ρ∇ ·U =

dρ

dt
+ ρ∇ ·U = 0 (4.46)

The above an also be derived from standard ontinuum mehanis (see for example

[20, 21℄ as well as [3℄, Pages 386 to 387). Now, rearranging Eq. (4.46) into the following

∇ ·U = −1

ρ

dρ

dt
(4.47)
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The above an be used together with Eq. (4.45) to generate the so-alled pressure equa-

tion (see also [25, 49℄ about the pressure equation). In this work, this was attempted. A

pressure equation similar to what is implemented in the settlingFoam solver was tested.

Unfortunately, the implementation resulted in frequent run rashes and extreme sensitiv-

ity towards the use of higher solid onentration values for αd. That is, αd values higher

than say 10−2
started to result in run rashes. Thus, another approah was needed in

generating the pressure equation.

For ompressible gas, a 10% variation in density (i.e. 0.1 ·ρ) an our within a fration
of a seond, giving

1

ρ

dρ

dt
≈ 1

ρ

∆ρ

∆t
=

1

ρ

(

0.1 · ρ
0.1 s

)

= 1 s−1, (4.48)

and thus ∇ · U = 0 annot be assumed for this partiular ase. However, for a highly

visous �uid like the fresh onrete, a 10% variation in density (0.1 · ρ) by settling (or

other means) typially ours, say, during minutes or longer, resulting in the following

ondition

1

ρ

dρ

dt
≈ 1

ρ

∆ρ

∆t
=

1

ρ

(

0.1 · ρ
100 s

)

≤ 10−3 s−1
(4.49)

Thus, for suh ase, one an suggest the use of Eq. (4.50) when generating the pressure

equation.

∇ ·U = 0 (4.50)

A third approah (Eq. (4.47) being the �rst, and Eq. (4.50) the seond) is possible on-

sisting of using the result of Eq. (2.47), Page 23, reprodued with Eq. (4.51).

∇ ·U = ∇ ·R (4.51)

In the above, the mixture veloity Vm was replaed by U1 (see Setion 4.2), whih again

was replaed by U, sine R = 0 in the atmospheri air (i.e. in phase 2, meaning α2 = 1),
where Eq. (4.50) is retrieved (.f. ρ2 = constant). The term R is de�ned with Eq. (2.48)

and reprodued below:

R =

(

βd

[

ρd − ρc
ρm

]

Vdj

)

(4.52)

Using Eq. (4.51) with Eq. (4.45) results in the following

∇ · H(U)

aP
−∇ · ∇p_rgh

aP
−∇ · g · x∇ρ

aP
+∇ · σ κ∇α1

aP
= ∇ ·R (4.53)

Rearranging and integrating over an arbitrary ell volume VP:

∫

VP
∇ ·
(

1
aP
∇p_rgh

)

dV =
∫

VP

(

∇ · H(U)
aP

−∇ · g·x∇ρ

aP
+∇ · σ κ∇α1

aP
−∇ ·R

)

dV (4.54)
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Sine the right side of Eq. (4.54) is evaluated with the divergene operator fv::div(),

it has to be multiplied with the fae area vetor

22 S = n|S|, where n is the orresponding

unit normal vetor. With this step, there is apparently a physial-unit mismath between

between the left side and right side of this equation. But atually, this is not the ase

sine fv::div() operator is overloaded in suh manner. After this step, Eq. (4.54) has

the following form

23

∫

VP
∇ ·
(

1
aP
∇p_rgh

)

f
dV =

∫

VP
∇ ·
(

(

H(U)
aP

)

f
· S
)

dV+

∫

VP
∇ ·
[

(σ κ n · ∇α1 − g · x n · ∇ρ)f

(

1
aP

)

f
|S| −Rf · S

]

dV
(4.55)

The right side of the above is alulated by the Gauss's theorem and therefore values

that apply at the ell faes are shown. To reiterate the above text about fv::div(),

the

∫

∇ ·R dV =
∫

Rf · dS is alulated as

∑

f Rf and not as

∑

f Rf · S and thus the

operation of the fae �ux on the right side of Eq. (4.55) is neessary (i.e. alulation of

Rf · S is needed before applying fv::div()). However, for the left hand side, then

∫

∇ · (b∇p) dV is evaluated with

∑

f (bfS · ∇p)f , whih means that there is no need to

operate the fae area �ux S before applying the Laplaian operator. That is, the left

side of Eq. (4.55) is evaluated with the fvm::laplaian() operator, as shown with the

following setion of the soure ode pEqn.H:

fvSalarMatrix p_rghEqn

(

fvm::laplaian(rAUf, p_rgh) == fv::div(phiHbyA)

);

in whih laplaian(rAUf, p_rgh) is given by

laplaian(rAUf, p_rgh) =
(

1
aP
∇p_rgh

)

f
(4.56)

and phiHbyA by

phiHbyA =
(

H(U)
aP

)

f
· S+ (σ κ n · ∇α1 − g · x n · ∇ρ)f

(

1
aP

)

f
|S| −Rf · S (4.57)

As shown in the ode pEqn.H, the term −Rf · S is added to the pressure equation with

phiHbyA += pResidue, in whih −Rf is alulated as:

volSalarField densityVariation

(

"densityVariation",

22

Usually, the fae area vetor S is drawn as pointing outward from a ell. However, this atually

depends on the label of the ell in question and the label of the neighboring ell, the vetor pointing into

the ell of higher label number. The ell with the lower label number is the owner of the fae in question.

23

When operating the fae area vetor S, it has to be on a fae value of a vetor (or tensor) instead of

on the orresponding nodal point value (i.e. S ·Rf and not S ·R).
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betaD*((rhoD - rhoC)/rho1)

);

surfaeSalarField pResidue

(

-fv::interpolate(densityVariation)*phiVdj

);

In the above, the term phiVdj is alulated withVdj ·S = VGR
dj ·S+VSR

dj ·S. More preisely,

in partileMigration.H, gravitySegregation.H and driftVeloity.H, respetively,

then:

phiVdjSR = fv::interpolate(VdjSR) & mesh.Sf();

phiVdjGR = fv::interpolate(VdjGR) & mesh.Sf();

phiVdj = phiVdjGR + phiVdjSR;

In pEqn.H, the total �ux φf = phi, through eah single fae of an arbitrary ell, is

alulated with:

phi = phiHbyA - p_rghEqn.flux();

More spei�ally, the above ode represents the following equation

φf =
(

H(U)
aP

)

f
· S+ (σ κ n · ∇α1 − g · x n · ∇ρ)f

(

1
aP

)

f
|S|

− Rf · S−
(

1
aP
∇p_rgh

)

f
· S

(4.58)

The term p_rghEqn.flux() is the o� diagonal part of the array in p_rghEqn, given by

p_rghEqn.flux() =
(

1
aP
∇p_rgh

)

f
· S

(4.59)

By summing the �ux Eq. (4.58) of all faes for a single arbitrary ell, the following is

obtained

∑

f φf =
∑

f

(

H(U)
aP

)

f
· S+

∑

f (σ κ n · ∇α1 − g · x n · ∇ρ)f

(

1
aP

)

f
|S|

− ∑

f Rf · S−∑f

(

1
aP
∇p_rgh

)

f
· S

=
∫

∂VP

(

H(U)
aP

)

f
· dS+

∫

∂VP
(σ κ∇α1 − g · x∇ρ)f

(

1
aP

)

f
dS

−
∫

∂VP
Rf · dS−

∫

∂VP

(

1
aP
∇p_rgh

)

f
· dS

=
∫

VP
∇ · H(U)

aP
dV −

∫

VP
∇ · g·x∇ρ

aP
dV +

∫

VP
∇ · σ κ∇α1

aP
dV

−
∫

VP
∇ ·R dV −

∫

VP
∇ ·
(

1
aP
∇p_rgh

)

dV = 0

(4.60)

In the last two lines, the Gauss theorem was applied, while the outome of zero in the end

(i.e.

∑

f φf = 0) is in aordane with Eq. (4.54). The outome of Eq. (4.60) means that

when alulating the �ux by Eq. (4.58), ontinuity by Eq. (4.51) is automatially ful�lled.
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4.9.2 Expliit Veloity Corretion

In the soure ode pEqn.H, the term φg = phig is alulated as follows:

surfaeSalarField phig

(

(

fv::interpolate(sigmaK)*fv::snGrad(alpha1)

- ghf*fv::snGrad(rho)

)*rAUf*mesh.magSf()

);

With rAUf = (1/aP)f , then phig/rAUf is equal to

phig/rAUf =

(

(σ κ n · ∇α1 − g · x n · ∇ρ)f

(

1

aP

)

f

|S|
)

aP|f (4.61)

. . .and through Eq. (4.59), then. . .

p_rghEqn.flux()/rAUf =

[

(

1

aP
∇p_rgh

)

f

· S
]

aP|f (4.62)

The di�erene between the two above equations is as follows

(phig - p_rghEqn.flux())/rAUf =
(σ κ n · ∇α1 − g · x n · ∇ρ)f |S| − ∇p_rgh|f · S (4.63)

Making the above result valid at nodal point P (instead of at a ell fae):

fv::reonstrut((phig - p_rghEqn.flux())/rAUf) =
σ κ∇α1 − g · x∇ρ−∇p_rgh

(4.64)

Thus the �nal veloity orretor UP, alulated at nodal point P, and given by the fol-

lowing ode. . .

U = HbyA + rAU*fv::reonstrut((phig - p_rghEqn.flux())/rAUf);

. . .and is exatly the same as Eq. (4.45), whih is reprodued below:

UP =
H(U)

aP
− ∇p_rgh

aP
− g · x∇ρ

aP
+

σ κ∇α1

aP
(4.65)

The in�uene of ∇ · R on the above equation is through its use of p_rgh, whih is

obtained solving the pressure equation Eq. (4.55). If pimple.momentumPreditor() is

true, then ∇ · R will also a�et the new predition of U (i.e. UP) through solve(UEqn

== fv::reonstrut(. . . - fv::snGrad(p_rgh). . . )) in UEqn.H. Also, sine the �ux

alulation φf = phi by Eq. (4.58) is frequently used, inluding in fvVetorMatrix

UEqn(...) through fvm::div(rhoPhi, U) (whih gives H(U)), as well as in the alu-

lation of α1 and αd onvetion in alpha1EqnRho.H and alphaDEqn.H, the e�et of ∇ ·R
will basially resonate everywhere in the ode. The same onsideration would arise if

Eq. (4.47) would be used instead of Eq. (4.51).

Part of the soure ode pEqn.H reads as follows:
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phiHbyA += phig;

#ifdef USE_PRESSURE_RESIDUE

volSalarField densityVariation

(

"densityVariation",

betaD*((rhoD - rhoC)/rho1)

// alpha1*betaD*((rhoD - rhoC)/rho1)

);

surfaeSalarField pResidue

(

-fv::interpolate(densityVariation)*phiVdj

);

phiHbyA += pResidue;

#endif

while (pimple.orretNonOrthogonal())

{

fvSalarMatrix p_rghEqn

(

fvm::laplaian(rAUf, p_rgh) == fv::div(phiHbyA)

);

...

As shown in the above ode, the user an deide if Eq. (4.55) is solved with R = 0
(i.e. solving for Eq. (4.50)) or with R as given by Eq. (4.52) (i.e. solving for Eq. (4.51)).

This is ontrolled with the maro de�nition USE_PRESSURE_RESIDUE in the soure ode

maroDefinitions.H. The default setup in the soure ode is using R = 0. This is not
a bad hoie when onsidering the result of Eq. (4.49). Most of the simulation results

shown in this report are solved in this manner. However, the term R by Eqs. (4.51) and

(4.52), has for example been used in [16℄. Thus, applying this last-mentioned approah is

apparently neither a bad hoie.

4.9.3 Monitoring ∇ ·U
In the soure ode omprsblContErrs.H, the information about ∇ ·U is exported to the

onsole. More preisely, the term magWeightedAverageDivPhi is shown and alulated

as:

Ew(t) =

∫ t

0

|∇ ·U(x, t∗)|w dt∗ (4.66)

where |∇ ·U|w is the weighted average of |∇ ·U| relative to mass of materials in eah ell

(i.e. weightedAverage(rho*mesh.V())) and x represents the oordinates x, y and z.
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The term Ew(t) an be divided by the urrent time t, whih then an be onsidered

as measure of inompressibility at time t. The produt of this, namely ew(t) is given by

Eq. (4.67). A value of e(t) = 0 would represent a omplete inompressibility, or ∇·U = 0.

ew(t) =
Ew(t)

t
=

1

t

∫ t

0

|∇ ·U(x, t∗)|w dt∗ (4.67)

Fig. 4.4 shows the alulation results of |∇ ·U|w and ew as a funtion of time, for the

ase of Figs. 1.12 and 1.13, Page 13 (note, R = 0 in this ase). As shown, the value of

e(t) ≈ 10−7 s−1
is obtained, whih is fairly lose to inompressibility. If the alulations

are repeated without magnitude (i.e. without mag() in the above ode), the result is an

order of magnitude less, or 10−8 [s−1].
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Figure 4.4: Calulations of |∇ ·U|w (shown to the left) and ew(t) (shown to the right) for

the ase of Figs. 1.12 and 1.13 (Page 13).
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Chapter 5

Rheologial Behavior of the Mixture

5.1 Apparent Visosity

As disussed in Setion 4.8.1 (see also Chapter 3), the ombined apparent visosity η of

the atmospheri air (phase 2) and the �uid mixture (phase 1) are weighted by the volume

frations α1 and α2 [25, 26℄

η = α1 η1 + α2 η2 (5.1)

in whih the �uid mixture is modeled through η1, while the atmospheri air (i.e. phase 2)
is always set as a Newtonian �uid η2 = constant. As a starting point, the mixture �uid

an be (nominally) modelled in the same manner as done by Eq. (5.1), namely

24

with

η1 = βc ηc + βd ηd (5.2)

where βc and βd are the volume fration of phase  and d, respetively, .f. Chapter 2.

The terms ηc and ηd are their respetive apparent visosities. When the mixture �uid is

a suspension, the phase d represents suspended partiles (e.g. oarse aggregates), while

phase  represents the matrix.

As desribed in [3℄ on Pages 237 to 239, the apparent visosity is fundamentally de-

�ned by the (rate of) momentum transfer between partiles. Thus, when determining the

apparent visosity for suspended partiles alone, it beomes very dependent on the dis-

tane between partiles, i.e. on the amount of matrix βc present in the overall suspension.

This means that ηd depends at least on βc, meaning ηd = ηd(βc). Also, sine the quantity
of suspended partiles will in�uene the loal shear rate γ̇c in the matrix (see Fig. 4.5

in [3℄), whih ould in�uene the e�et of ηc, then at least ηc = ηc(βd). In addition to

this, the matrix usually onsists of a non-Newtonian �uid whih ompliates the behavior

in Eq. (5.2) still further. There will also be an additional nonlinear behavior present in

η1 beause of the dense solid onentration βd used in the mixture. Instead of trying

to resolve Eq. (5.2) (i.e. using a superpositioning between ηc and ηd), a more empirial

24

See also the text below Eq. (2.53) on Page 24.
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approah is traditionally used, namely by modeling η1 diretly as a funtion of βd with

other materials parameters and �ow properties, e.g. η1 = η1(γ̇, βd, . . .).
In the following text of this hapter, when disussing the solid onentration of the

suspended partiles (see also Footnote 2, Page 2), the term ϕ is used instead of βd

or αd. That is, the term ϕ an be equal to αd or βd, depending on user preferene.

Whihever is applied, the modi�ation is made in the soure odes orretVisosity.H,

gravitySegregation.H and partileMigration.H. Note, making the same hoie in all

the three odes is not neessary. Again, this depends on user preferene and knowledge

of the material and the overall �ow system, whih is being investigated.

5.2 Empirial Approah

5.2.1 Linear Weight Funtion

Normalizing Relative to wf(0) = 1

For the more traditional suspension of monosized spheres submerged in a Newtonian

liquid with visosity of η0, the apparent visosity is generally given by Eq. (5.3):

η1(ϕ) = wf (ϕ) · η0 (5.3)

Usually, the weight funtion has the property of wf(0) = 1, meaning that the apparent

visosity of the mixture η1 approahes that of the matrix η0 as the solid onentration

is dereased. In the ase of Einstein's model, this weight funtion is given by wf(ϕ) =
1+2.5ϕ, while for the Krieger-Dougherty equation it is wf(ϕ) = (1−ϕ/ϕm)

−[η]ϕm
, where

[η] is the o-alled intrinsi visosity and ϕm is the maximum paking fration [2, 50, 51℄.

Normalizing Relative to wf(ϕ0) = 1, in whih ϕ0 > 0

Rather than using a referene point for η0 that is relative to zero volume fration (ϕ = 0),
like initially done in Eq. (5.3), one an use this equation with a referene point relative to

a (nominal/initial) homogeneous mixture i.e. when no segregation has ourred (no slip

between phases, .f. Setion 2.3.1). At this point, the volume fration is designated with

ϕ = ϕ0, in whih �0� symbolizes initial state of onentration. The main property of ϕ0

is wf(ϕ0) = 1.
Using the above approah, one an use a linear weight funtion wf(ϕ), whih is

bounded between spei� values wmax
f and wmin

f . Furthermore, limit values an be set

for the volume fration ϕ, given by a minimum value ϕmin
and a maximum value ϕmax

.

An example of a linear weight funtion that is onstrained by these properties is given

by:

wf(ϕ) =
wmax

f − wmin
f

ϕmax − ϕmin
· (ϕ− ϕmin) + wmin

f (5.4)
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To maintain the important property wf(ϕ0) = 1, then relative to Eq. (5.4), the term ϕ0

must be de�ned as:

ϕ0 = (1− wmin
f )

ϕmax − ϕmin

wmax
f − wmin

f

+ ϕmin
(5.5)

With for example, ϕmin = 0, ϕmax = 0.4, wmin
f = 0.4 and wmax

f = 1.6, the following is

obtained:

ϕ0 = (1− 0.4)
0.4− 0

1.6− 0.4
+ 0 = 0.2 (5.6)

Thus, wf(0.2) = 1, and if ϕ < 0.2 then wf(ϕ) < 1 and if ϕ > 0.2 then wf(ϕ) > 1.
The approah of Eq. (5.4) is just an example and its implementation an be found in the

soure ode apparentVisosity.H:

volSalarField weightFuntion1

(

onst volSalarField& varPhi,

onst dimensionedSalar& varPhiMIN,

onst dimensionedSalar& varPhiMAX

)

{

dimensionedSalar WF1_MAX

(

"WF1_MAX",

dimensionSet(0,0,0,0,0,0,0),

salar(1.6)

);

dimensionedSalar WF1_MIN

(

"WF1_MIN",

dimensionSet(0,0,0,0,0,0,0),

salar(0.4)

);

dimensionedSalar slope("slope",dimensionSet(0,0,0,0,0,0,0),salar(1));

slope = (WF1_MAX - WF1_MIN)/(varPhiMAX - varPhiMIN);

tmp<volSalarField> weight

(

slope*mag(varPhi - varPhiMIN) + WF1_MIN

);

return weight();

}

The all to Eq. (5.4) is made with the following ode available in apparentVisosity.H:

volSalarField WF1 = weightFuntion1(varPhi, varPhiMIN, varPhiMAX);
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The apparent visoity of the mixture in homogenous state (i.e. when ϕ = ϕ0 and thus

wf(ϕ) = 1 in Eq. (5.3)) an be modelled with the traditional Bingham model [2℄

η0 = µ+
τ0
γ̇

(5.7)

where µ is the plasti visosity, τ0 is the yield stress and γ̇ is the shear rate given by

[52, 53, 54℄

γ̇ =
√
2 ε̇ : ε̇ (5.8)

The term ε̇ is the rate�of�deformation tensor as given in Setion 3.6 on Page 30.

Beause of the nonlinearities in the governing equation and beause of the inherent

disontinuity in the onstitutive equation, a omputer simulation of yield stress �uid (i.e.

visoplasti �uid) is di�ult. As the yield surfae is approahed, the presene of shear

rate γ̇ in the denominator of Eq. (5.7) (and later in Eqs. (5.9) and (5.10)) makes the

apparent visosity η1 unbounded. Furthermore, while simulating the veloity �eld U, the

loation of the yield surfae is unknown prior to alulation. To overome these di�ul-

ties, a regularized version of the visoplasti model has been proposed by Berovier and

Engelman [40℄. It onsists of adding a small regularization parameter δ in the denomina-

tor of Eq. (5.7). Berovier and Engelman used suh approah to solve Bingham �ow in a

losed square avity subjet to a body fore [40℄. This equation has also been suessfully

used by Taylor and Wilson to simulate onduit �ow of an inompressible Bingham �uid

[41℄. Furthermore, Burgos et al. used the regularization parameter δ in this manner to

simulate antiplane shear �ow of a Hershel�Bulkley �uid [42℄. They also used other types

of regularization approahes for omparison [42℄. Hene, with a proper hoie of δ, the
regularized version of the visoplasti model an be suessfully used to simulate both

the yielded region and the unyielded region [40, 41, 42℄. The use of the regularization

parameter δ in this manner has also been used in [3, 43, 44, 45, 46℄ for Bingham, modi�ed

Bingham as well as thixotropi visoplasti material models.

By using the regularization parameter δ (or delta), the alls to Eqs. (5.7), (5.3), (5.4)
and (5.1) are made with the following ode in apparentVisosity.H:

onst dimensionedSalar mu_Bi("mu_Bi", dimPressure*dimTime, salar(50.0));

onst dimensionedSalar tau0_Bi("tau0_Bi", dimPressure, salar(10.0));

tmp<volSalarField> visous_2

(

WF1*mag(alpha1)*

(

mu_Bi + tau0_Bi/(shearRate + delta)

)

+ mag(salar(1) - alpha1)*eta2

);

Other models like the Hershel�Bulkley model Eq. (5.9) [55℄ an also be applied in

Eq. (5.3).

η0 = Kγ̇n−1 +
τ0
γ̇

(5.9)
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In the above equation, the term K is the onsisteny fator and n is the �ow index (also,

onsisteny index). The alls to Eqs. (5.9), (5.3), (5.4) and (5.1) are made with the

following ode in apparentVisosity.H:

onst salar n_HB = 1.14;

onst dimensionedSalar K_HB("K_HB", dimPressure*dimTime, salar(40.7));

onst dimensionedSalar tau0_HB("tau0_HB", dimPressure, salar(16.5));

onst dimensionedSalar tOne("tOne", dimensionSet(0,0,1,0,0,0,0), salar(1.0));

tmp<volSalarField> visous_3

(

WF1*mag(alpha1)*

(

K_HB*pow(shearRate*tOne,n_HB-1.0) + tau0_HB/(shearRate + delta)

)

+ mag(salar(1) - alpha1)*eta2

);

Furthermore, in [45℄ the modi�ed Bingham model an be a good alternative to either the

standard Bingham model or the Hershel�Bulkley model. It is given by

η0 = µ+ c γ̇ +
τ0
γ̇

(5.10)

where c is the so-alled seond order term. The alls to Eqs. (5.10), (5.3), (5.4) and (5.1)

are made with the following ode in apparentVisosity.H:

onst dimensionedSalar mu_mBi("mu_mBi", dimPressure*dimTime, salar(82.6));

onst dimensionedSalar _mBi("_mBi",dimPressure*dimTime*dimTime,salar(1.5));

onst dimensionedSalar tau0_mBi("tau0_mBi", dimPressure, salar(23.7));

tmp<volSalarField> visous_4

(

WF1*mag(alpha1)*

(

mu_mBi + _mBi*shearRate + tau0_mBi/(shearRate + delta)

)

+ mag(salar(1) - alpha1)*eta2

);

Regardless of the hoie of material model used (Eqs. (5.7), (5.9) or (5.10), or others) for

the initial/nominal homogeneous mixture, then through Eq. (5.3) the apparent visosity η1
an either inrease or derease relative to η0 depending on deviation in solid onentration
ϕ from the initial/normal/nominal value ϕ0.

The approah presented in this setion is an empirial approah but an be quite

aurate provided that a good rheometer is available for measuring the material parame-

ters of η0 (whihever model is used, Eqs. (5.7), (5.9), (5.10) or others not mentioned) as
well as measuring the sensitivity of the weight funtion wf(ϕ) when hanging the solid

onentration ϕ in the mixture (relative to the initial/normal/nominal value ϕ0).
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5.2.2 Exess and Shortage of ϕ Relative to ϕ0

If the aim is to look at the segregation of oarse aggregates in the fresh onrete (or in other

types of mixtures), the distintion between the matrix and suspended partiles needs to

be de�ned relative to this proess. More preisely, the distintion between the two phases

must orrelate with the domain of partile sizes that are atually segregating. For example,

assuming that aggregate partiles larger than 11mm in diameter are partiipating in

segregation, and all materials of smaller size are not, the distintion between the matrix

and the suspended partiles must also re�et this division. In this ontext, it is important

to note that the referene visosity η0 in Eq. (5.3) and the use of the weight funtion

Eq. (5.4) must be relative to this de�nition. That is, if η0 in Eq. (5.3) represents the

apparent visosity of a homogeneous mixture with aggregate range from 0 to 16mm and

the solid onentration of 11− 16mm aggregates in this homogeneous mixture is ϕ = ϕ0

(e.g. with ϕ0 = 0.2), the exess of 11− 16mm aggregates is represented with ϕ > ϕ0 and

the shortage with ϕ < ϕ0, resulting in wf(ϕ) > 1 and wf(ϕ) < 1, respetively.

5.3 Theoretial Approah

Instead of using an empirial approah like mentioned in Setion 5.2, it is also possible

to apply existing theoretial approah, in whih the physial parameters depend on the

volume fration ϕ. This is the topi of the urrent setion.

5.3.1 Apparent Visosity

An example of apparent visosity for the mixture that is expliitly and theoretially

dependent on the volume fration ϕ is as follows

η1 = µ(ϕ) +
τ0(ϕ)

γ̇
(5.11)

The term µ(ϕ) an be onsidered as a plasti visosity that depends on the volume fration
ϕ and likewise the term τ0(ϕ) as the orresponding yield stress. In spite of the dependeny
on ϕ, the above equation an be onsidered to represent a Bingham model, at least in the

limit when ϕ = constant.
In Eq. (5.11), the plasti visosity µ(ϕ) an for example be modeled as by Krieger and

Dougherty [51℄

µ(ϕ) = µ(0)

(

1− ϕ

ϕm

)−[η]ϕm

(5.12)

while the yield stress an depend on the work by Chateau, Ovarlez and Trung [56℄

τ0(ϕ) = τ0(0)

√

(1− ϕ)

(

1− ϕ

ϕm

)−2.5ϕm

(5.13)
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In the above two equations, the terms µ(0) and τ0(0) are the values of µ(ϕ) and τ0(ϕ)
when ϕ = 0. Also, the term ϕm represents the maximum paking fration (i.e. dense

paking fration). As mentioned before, the term [η] is known as the intrinsi visosity

and is a measure of the partile shape. More preisely, the intrinsi visosity is 2.5 for

spherial partiles and when the partiles deviate from spherial shape, this value is higher

[2℄. For example, for ground gypsum the reported value is [η] = 3.25 [2℄. Nevertheless,

the value of [η] = 2.5 has been used in relation to the fresh onrete [57℄.

Although the intrinsi visosity [η] and the maximum paking fration ϕm an vary

between materials, it is reported in [2℄, that the produt of the two appears to be a

onstant, i.e. [η]ϕm ≈ 2 (see Table 7.2 in [2℄).

Note that in Eq. (5.13), the intrinsi visosity [η] is not used [56℄. However, based on

Eq. (5.12), one ould suggest that the e�et of partile shape should be inluded in this

equation and thus the value �2.5� replaed with [η], giving

τ0(ϕ) = τ0(0)

√

(1− ϕ)

(

1− ϕ

ϕm

)−[η]ϕm

. (5.14)

5.3.2 Code Implementation

The alls to Eqs. (5.11), (5.12), (5.13)/(5.14) and (5.1), using [η] = 3.25 and ϕm = 0.55,
are made with the following ode in apparentVisosity.H:

// Maximum paking fration:

onst dimensionedSalar varPhiM("varPhiM", dimless, salar(0.55)); // 0.75

// Intrinsi visosity:

onst dimensionedSalar etaInVi("etaInVi", dimless, salar(3.25)); // 2.50

tmp<volSalarField> visous_5

(

mag(alpha1)*

(

mu*pow(mag(salar(1) - varPhi/varPhiM), -etaInVi*varPhiM)

+

tau0*sqrt

(

mag(salar(1) - varPhi)*pow(mag(salar(1) - varPhi/varPhiM),

-2.5*varPhiM)

// -etaInVi*varPhiM)

)/(shearRate + delta)

)

+ mag(salar(1) - alpha1)*eta2

);
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5.3.3 Distintion between Matrix and Suspended Partiles

The fresh onrete onsists of partiles with a broad range of mass, dimension, shape

and surfae texture, suspended in a matrix. The distintion between matrix (i.e. the

ontinuous phase) and suspended partiles (i.e. the dispersed phase) is a matter of hoie,

in ontrast to the more traditional suspension of spheres submerged in a Newtonian liquid.

In [3℄, the matrix was de�ned by pure onveniene to be the 0− 2mm mortar inside the

fresh onrete. Suh an approah is quite ommon, for example Mørtsell [58℄ treats the

0−0.125mm �ller modi�ed ement paste as matrix, instead of the pre-mentioned mortar.

As mentioned in Setion 5.2.2, if the aim is to look at the segregation of partiles, the

above distintion between matrix and suspended partiles needs to be rede�ned relative

to this proess. More preisely, the distintion between the two phases must orrelate

with the domain of partile sizes that are atually segregating. Thus, the division must

rather be based on observation rather than by pure onveniene as given in the above

paragraph.

5.3.4 Maximum Paking Fration ϕm

The maximum paking fration

25 ϕm used in Eqs. (5.12) and (5.13) must be relative to the

de�nition between matrix and suspended partiles. For example, using the pre-mentioned

division at 11mm in diameter, one annot use the maximum paking fration relative to

the whole aggregate range 0 − 16mm used in the mixture. For this whole range, the

maximum paking fration has been reported to be up to 0.75 [57℄.

By using the (multimodal) onvention done in [59℄, the plasti visosity and the yield

stress are given by (see also [56, 60, 61℄):

µ(φ) = µi

(

1− φcem

φcem,c

)−2.5φcem,c
(

1− φsand

φsand,c

)−2.5φsand,c
(

1− φgravel

φgravel,c

)−2.5φgravel,c

(5.15)

τ0(φ) = τi

√

√

√

√

1− φcem
(

1− φcem

φcem,c

)2.5φcem,c

√

√

√

√

1− φsand
(

1− φsand

φsand,c

)2.5φsand,c

√

√

√

√

1− φgravel
(

1− φgravel

φgravel,c

)2.5φgravel,c
(5.16)

The terms φcem, φsand and φgravel are the volume frations of the ement partiles in

ement paste, sand partiles in mortar and gravel partiles in onrete, respetively. What

is important to note is that terms φcem,c, φsand,c and φgravel,c are their respetive maximum

paking frations. That is, the term φgravel,c is only the maximum paking frations of

gravel partiles, and NOT the maximum paking frations of the ombined partile system

ement, sand and gravel (i.e. not the maximum paking frations of the 0 − 16mm used

in the mixture).

If it is only the largest partiles that partiipate in the segregation/settling, the terms

φcem and φsand are onstants. With this, the rheologial ontribution of the smaller partile

25

Maximum paking fration is also known as dense paking fration and eigen�paking, among other

terms.
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range (i.e. 0 − 11mm), inluding the ement paste, is �xed as well and represented with

following

µ(0) = µi

(

1− φcem

φcem,c

)−2.5φcem,c
(

1− φsand

φsand,c

)−2.5φsand,c

= constant (5.17)

τ0(0) = τi

√

√

√

√

1− φcem
(

1− φcem

φcem,c

)2.5φcem,c

√

√

√

√

1− φsand
(

1− φsand

φsand,c

)2.5φsand,c
= constant (5.18)

The two above equations represent the visous ontribution of the matrix phase. Thus,

the zero in µ(0) and τ0(0) is relative to the volume fration of gravel partiles φgravel.

Assuming that only the gravel partiles are partiipating in segregation (i.e. φcem and

φsand are onstants), then φgravel = ϕ and thus φgravel,c = ϕm. With this, Eqs. (5.15) and

(5.16) (with Eqs. (5.17) and (5.18) in mind), relapse into Eqs. (5.12) and (5.13).

In [62℄ it was proposed that the volume fration ϕ in whih the onrete visosity

approahes in�nity

26

ould be de�ned as the maximum paking fration ϕm. Using this

approah in [59℄, this value was determined to be φgravel,c = ϕm = 0.645 for 5 − 25mm
gravel. For a more narrow partile range like 11 − 16mm, this value is still lower, say

0.55 or even less. Of ourse, this depends on the properties of the atual aggregates being

used.

In [63℄, an alternative method of determining the maximum paking fration ϕm is

given, whih is based on vibration of aggregates in a ylindrial ontainer, under ap-

pliation of pressure. There, it was reognized that the determination of this value is

dependent on the method (or proess) whih is used. Examples of values presented are

0.628 for 8 − 10mm rounded aggregates, while 0.572 for rushed aggregates of the same

size domain.

5.3.5 Charateristi Partile Diameter Da

It should be lear that Eqs. (5.12) and (5.13) are valid for monodispersed partile size dis-

tribution (i.e. all partiles of one size). Thus, if the de�nition between the matrix and the

suspended partiles are as desribed in Setion 5.3.4, one has to assume that the suspended

partiles range 11 − 16mm onsist of monosized partiles with a harateristi partile

diameter of Da. This value is designated as Da in the ase �le transportProperties.

For this example, the diameter Da ould represent the mass averaged diameter of the

whole olletion of gravel partiles, ranging from 11mm to 16mm. Or a slightly di�erent

approah ould be used to determine Da. Note that this term is not used in Eqs. (5.12)

and (5.13) and thus in that ase, its determination is unimportant. However, this value

is used in the alulation of settling by gravity VGR
s as shown in Setion 6.3 (see for

example Eq. (6.6)) and thus needs to be determined. Furthermore, this value an also be

used in the alulation of the shear (rate) indued partile migration VSR
s as explained in

Setion 6.4.

26

I.e. when the overall mixture beomes un�owable and sti�.
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Chapter 6

Settling Veloity Vs

6.1 Drift Veloity of the Dispersed Phase Vdj

6.1.1 Continuous and Dispersed Phases

To reiterate from the previous hapters, the �uid mixture (i.e. phase 1) is a suspension

that onsists of a ontinuous phase (i.e. a matrix) and a dispersed phase (i.e. suspended

partiles). Also, the ontinuous phase is marked with the subsript , while the dispersed

phase with d.

In Eq. (4.20), Page 35, the term Vdj represents the drift veloity and has already been

treated with Eq. (2.27) on Page 21, and is reprodued below:

Vdj = −βcVr = βc (Vd −Vc) (6.1)

The term Vr = Vc − Vd is the relative veloity between phases, given by Eq. (2.15)

on Page 20. The drift veloity Vdj is the veloity of the dispersed phase relative to the

mixture enter of volume and is needed to allow slip between phases (see Setion 2.3.1).

This is required to allow for the mixture (e.g. fresh onrete) to segregate, either by

gravitational settling and/or by other means, like settling by the shear (rate) indued

partile migration.

Below are two examples given, to better understand the physial meaning of the drift

veloity Vdj, at least relative to the segregation of high visous mixture like the fresh

onrete: Fig. 6.1 shows two di�erent ases of suspensions, one is diluted (a) and the

other is onentrated (b). In both ases, the partiles and liquid together represents a

losed system (no mass is �owing in or out of the system). The settlement of the partile is

represented with the veloity of the dispersed phase, namelyVd. The observed settlement

is also represented with the settling veloity Vs (that is, Vd = Vs).

It should be lear that the settling/segregation in Fig. 6.1 may be indued by gravity

(i.e. by di�erene in densities), and/or by shear (rate) indued partile migration, and/or

by other means. The relevant settling phenomenon depends of ourse on the mixture and

the overall �ow system that is being investigated.
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Vd

Vc Vc Vc Vc

Vc Vc

VdVd Vd

(a) (b)

Figure 6.1: Two di�erent ases of suspensions, one is diluted (a) and the other is onen-

trated (b).

6.1.2 Example 1: Diluted Case

Fig. 6.1a shows an example of settling of a single partile (i.e. of the dispersed phase) in a

large liquid medium (the ontinuous phase). By the onservation of volume in this losed

system, the upward veloity of the ontinuous phase Vc is initiated by the downward

movement of the single partile Vd. That is, as the partile moves downward, an equal

volume amount of ontinuous phase has to move upward. Now, due to the muh larger

quantity of the ontinuous phase, i.e. βc = 1−βd ≈ 1, and thus a muh larger (horizontal)
area that the liquid an bypass the partile, the veloity of the ontinuous phase is more

or less zero Vc ≈ 0. Thus by Eq. (6.1), the following is obtained:

Vdj = βc (Vd −Vc) ≈ 1.0 (Vd − 0) = Vd (Fig. 6.1a) (6.2)

That is, for the above ase, the drift veloity Vdj is more or less the same as the veloity

of the dispersed phase Vd. Moreover, the latter veloity is the same as the observed

settlement, whih is represented with the settling veloity Vs (i.e. here, Vd = Vs).

6.1.3 Example 2: Conentrated Case

In Fig. 6.1b, the veloity of the ontinuous phase Vc is initiated by the downward move-

ment of all the partiles. Due to a muh larger quantity of partiles moving downward, the

resulting upward veloity of the ontinuous phase Vc is now muh larger relative to the

previous example. Assuming that the volume fration of the dispersed phase is βd = 0.5
(i.e. half of the system total volume are solids), then by volume onservation priniple

(i.e. the system is losed and onserved), the upward veloity of the the ontinuous phase

would be similar to that of the partile phase, meaning Vc ≈ −Vd. Thus by Eq. (6.1),

the following is obtained:

Vdj = βc (Vd −Vc) ≈ 0.5 (Vd − (−Vd)) = Vd (Fig. 6.1b) (6.3)
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That is, for the above ase, the drift veloity Vdj is more or less the same as the veloity

of the dispersed phase Vd. As before, the latter veloity is the same as the observed

settlement, whih is represented with the settling veloity Vs (i.e. here, Vd = Vs).

6.1.4 Observed Settling Veloity Vs

From the two above examples, it an be suggested that the drift veloity Vdj is similar

or equal to the observed settling veloity Vs, represented with Eq. (6.4). This approah

is for example used in [7℄, Setion 2.4.

Vdj ≈ Vs (6.4)

It should be noted that a small dissimilarity between the onset Vdj (into the soure ode)

and the observed Vs (from the simulation result) was registered in Setion 1.5 (Page 8),

giving 5% time di�erene from the e�et of these two veloities.

6.2 Overall Drift Veloity

In order to alulate the mixture �ow with settling/segregation (i.e. with slip between

phases), the overall veloity of the dispersed phase d relative to the mixture enter of

volume needs to be alulated, given by

Vdj =
∑

q

V
q
dj = VGR

dj +VSR
dj + . . . (6.5)

where VGR
dj is the slip by gravity (Setion 6.3) and VSR

dj is the slip by shear (rate) indued

partile migration (Setion 6.4). Other physial proesses an be added into Eq. (6.5) as

indiated with the dots. As disussed in Setion 6.1 and shown with Eq. (6.4), the drift

veloity Vdj is onsidered to be the observed settling veloity, here designated with Vs

(see also [7℄). This is assumed to apply regardless of the physial proess responsible for

slip between phases, i.e. VGR
dj = VGR

s and VSR
dj = VSR

s .

6.3 Settling by Gravity

6.3.1 Theory

For a single partile in an in�nite medium of Newtonian �uid with the visosity of µN, it is

relatively straightforward to alulate the settling veloity (see [7, 13℄). For a single spher-

ial partile at low Reynolds number, through the equilibrium between weight, buoyany

and drag fore, the settling veloity is alulated as (see for example Setion 2.3.1 in [13℄

or Setion 2.4.1 in [7℄)

VGR
s =

D2
a g (ρd − ρc)

18µN

(6.6)
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To reiterate, the term µN is the Newtonian visosity, g is gravity, ρc is the density of the

ontinuous phase, ρd is the density of the dispersed phase and Da is the partile diameter.

For a single partile submerged in an in�nite medium of Bingham visoplasti �uid

with the apparent visosity of η1 = µ+τ0/γ̇, some suggestions of settling veloityVGR
s has

been proposed, based on Eq. (6.6). One suggestion onsists of replaing the Newtonian

visosity µN with the plasti visosity µ of the Bingham �uid [13℄. Another approah

onsists of using the apparent visosity η1 of the Bingham �uid [13, 64, 65℄. The third

approah is replaing µN with a so-alled tangential visosity of the Hershel�Bulkley

�uid, given by µtan = nK γ̇n−1
, where K is the onsisteny fator and n the onsisteny

index (also, �ow index) [13℄.

In [57℄, the Newtonian visosity µN in Eq. (6.6) is replaed with the loal surrounding

visosity of the suspending �uid, modeled as µs = η1/λ where λ ≥ 1. As before, η1 is

the mixture

27

apparent visosity. When λ equals 1, the surrounding �uid has the same

behavior as the tested mixture. As the former is more �uid relative to the latter, λ should

be higher than 1 [57℄. With this approah, Eq. (6.6) is transformed into the following

VGR
s =

D2
a g (ρd − ρc)

18 (η1/λ)
(6.7)

It should be noted that for hindered settling where the �ow �eld around any one partile

is a�eted by its neighbors, inluding partile-partile ollisions, the settling veloity an

also be depended on the solid onentration ϕ [7, 66℄. Thus, Eq. (6.7) may be inomplete.

In the solver vvpfFoam, a dependeny on ϕ is added by slowDown2, whih in its urrent

form avoids the ontinuous �lling of a ell with ϕ if it has reahed its designated max

apaity ϕMAX
(for example, equal to 0.4).

6.3.2 Code Implementation

The drift veloity VGR
dj is designated with VdjGR. Its �ux is alulated as φGR

dj = VGR
dj · S,

or phiVdjGR = fv::interpolate(VdjGR) & mesh.Sf();. The term S is the fae area

vetor of a ell and φ represents the ell fae �ux [34℄ (see also Setion 4.9). Settling by

gravity is implemented in gravitySegregation.H and is as follows (with λ = 1.45):

#inlude "orretVisosity.H"

tmp<volVetorField> VsGR =

mag(alpha1)*(pow(Da, 2.0)*g*(rhoD - rhoC))/(18.0*(etaEff/1.45));

#ifdef GRAVITY_SEGREGATION

VdjGR =

slowDown2

(

alphaD, // alphaD, or betaD, depending on user preferene!

27

For example, by Eq. (5.11), Page 54. Note that in aordane with Eq. (5.1), when exlusively

treating the mixture, meaning α1 = 1, then η = η1. In the soure ode, η is represented with etaEff.
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alphaDMIN,

alphaDMAX

)*(1.0*VsGR);

#else

VdjGR = zeroVeloity;

#endif

forAll(alpha1.internalField(), elli)

{

if

(

alpha1[elli℄ > lowerCrit.value()

&& alpha1[elli℄ < upperCrit.value()

&& alphaD[elli℄ > riteriaD.value()

)

{

VdjGR[elli℄ = (1.0 - alpha1[elli℄)*0.2100*interfaeNormal[elli℄;

}

else if (alpha1[elli℄ <= lowerCrit.value())

{

VdjGR[elli℄ = (1.0 - alpha1[elli℄)*0.0306*g.value();

}

}

forAll(mesh.boundary(), pathi)

{

VdjGR.boundaryField()[pathi℄ == vetor::zero;

forAll(alpha1.boundaryField()[pathi℄, faei)

{

if (alpha1.boundaryField()[pathi℄[faei℄ < lowerCrit.value())

{

VdjGR.boundaryField()[pathi℄[faei℄ =

(1.0 - alpha1.boundaryField()[pathi℄[faei℄)*0.0306*g.value();

}

}

}

VdjGR.orretBoundaryConditions();

phiVdjGR = fv::interpolate(VdjGR) & mesh.Sf();
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6.4 Settling by Shear Indued Partile Migration

6.4.1 Theory

In this work, the term shear indued partile migration, will also have the designation

shear rate indued partile migration, due to the physial proess it originates from (see

Setion 10.1 in [3℄).

Often, the equation for the partile �ux is given by [14, 67℄

∂ϕ

∂t
+∇ · (ϕU) = −∇ ·Nt (6.8)

The above equation does not aount for di�erene in density between the ontinuous

phase and the dispersed phase and thus is only orret for neutrally buoyant suspension,

meaning ρc = ρd = ρ1. The term Nt represents the partile �ux of the dispersed phase

with solid onentration of ϕ and is given by [68℄ (see also [14, 67℄)

Nt = Nc +Nη = −Kca
2ϕ∇(γ̇ϕ)−Kηa

2γ̇ϕ2∇(ln η1) (6.9)

where the terms Kc = 0.41 and Kη = 0.62 are empirial �tted parameters [14, 67, 68℄.

The term a is the radius of the (harateristi) partile, here equal to Da/2 (see also

Setion 5.3.5, Page 57, about the parameter Da).

The partile �ux Nt aounts for both shear rate indued partile migration as well as

ompensations by the visosity gradient indued e�ets. The latter phenomenon, namely

Nη = −Kηa
2γ̇ϕ2∇(ln η1), aounts for the tendeny of partiles to migrate away from the

high visous values η1 to lower values of η1 [69℄. More preisely, as the mixture gets more

�uid, the mobility of partiles is higher [69℄.

For Eq. (4.20), Page 35, one an replae the term αd with ϕ, .f. the disussion in the

last paragraph of Setion 5.1. In this ase, the term Ur ξd (1− α1) an be exluded sine

only the mixture (i.e. phase 1) is being onsidered. Furthermore, sine only settling by

shear indued partile migration is addressed, then Vdj = VSR
dj . Finally, with a neutrally

buoyant suspension ρc = ρd = ρ1 (as is assumed in Eq. (6.8)), Eq. (4.20) is transformed

into the following

∂ϕ

∂t
+∇ · (ϕU) = −∇ · (ϕVSR

dj ) (6.10)

Comparing Eqs (6.8) and (6.10), one obtains Nt = ϕVSR
dj , meaning

VSR
dj =

Nt

ϕ
= −Kca

2∇(γ̇ϕ)−Kηa
2γ̇ϕ∇(ln η1) (6.11)

With the assistane from the indiial notation and the summation onvention [20, 21, 39℄,

as well as using the hain rule, it is possible to alulate ln η1 further

∇(ln η1) = iq
∂(ln η1)

∂xq

= iq
∂(ln η1)

∂η1

∂η1
∂xq

=
∂(ln η1)

∂η1
∇η1 =

∇η1
η1

(6.12)
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Thus, with the above result and a = Da/2, Eq. (6.11) an be rewritten as

VSR
dj = −Kc

(

Da

2

)2

∇(γ̇ϕ)−Kη

(

Da

2

)2

γ̇ϕ
∇η1
η1

(6.13)

or equally

VSR
dj = −D2

a

4

(

Kc∇(γ̇ϕ) +Kηγ̇ϕ
∇η1
η1

)

(6.14)

It should be noted that the parameters Kc and Kη may not be onstants, but atually

depend on ϕ [70℄. Furthermore, Eq. (6.9) is generated from experimentation of small inert

neutrally buoyant partiles with almost mono-sized partile size distribution [14℄. Thus,

some modi�ations of the above might be neessary to aommodate a di�erent mixture

type.

In the limited ase of ∇η1 ≈ 0 and ϕ ≈ constant, then Eq. (6.14) beomes

VSR
dj ≈ −

(

D2
a

4
Kcϕ

)

∇γ̇ = −k∇γ̇ (6.15)

For example, withDa = 13mm and ϕ ≈ 0.2, then k = (0.0132/4)·0.41·0.2 = 0.35·10−5m2
.

Eq. (6.15) has been used in relation to self ompating onrete, with k = 1.4 · 10−5m2

[71℄. See also Setion 10.1 in [3℄ about the term −k∇γ̇ and its physial signi�ane.

6.4.2 Code Implementation

The drift veloity VSR
dj is designated with VdjSR. Its �ux is alulated as φSR

dj = VSR
dj · S,

or phiVdjGR = fv::interpolate(VdjSR) & mesh.Sf();. As before, the term S is the

fae area vetor. Settling by the shear rate indued partile migration is implemented in

partileMigration.H and is as follows (with Eq. (6.15) ommented out):

#inlude "orretVisosity.H"

volVetorField gradShearRate(fv::grad(shearRateAlpha1));

// volVetorField gradShearRate(fv::grad(shearRate));

// ---

// onst dimensionedSalar Ksr("Ksr", dimensionSet(0,2,0,0,0,0,0), salar(0.8e-5));

// tmp<volVetorField> VsSR = -mag(alpha1)*Ksr*gradShearRate;

// ---

onst dimensionedSalar K("K", dimless, salar(0.41));

onst dimensionedSalar Keta("Keta", dimless, salar(0.62));

onst dimensionedSalar a = Da/2.0;

tmp<volVetorField> VsSR =

-mag(alpha1)*
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(

// K*pow(a, 2.0)*fv::grad(shearRate*alphaD)

// + Keta*pow(a, 2.0)*shearRate*alphaD*(gradEtaEff/(etaEff + deltaEta))

K*pow(a, 2.0)*fv::grad(shearRateAlpha1*alphaD)

+ Keta*pow(a, 2.0)*shearRateAlpha1*alphaD

* (gradEtaEff/(etaEff + deltaEta))

);

#ifdef PARTICLE_MIGRATION

VdjSR =

slowDown4

(

alphaD, // alphaD, or betaD, depending on user preferene!

alphaDMIN,

alphaDMAX

)*(1.0*VsSR);

#else

VdjSR = zeroVeloity;

#endif

forAll(alpha1.internalField(), elli)

{

if

(

alpha1[elli℄ > lowerCrit.value()

&& alpha1[elli℄ < upperCrit.value()

&& alphaD[elli℄ > riteriaD.value()

)

{

VdjSR[elli℄ = (1.0 - alpha1[elli℄)*0.2100*interfaeNormal[elli℄;

}

else if (alpha1[elli℄ <= lowerCrit.value())

{

VdjSR[elli℄ = (1.0 - alpha1[elli℄)*0.0306*g.value();

}

}

forAll(mesh.boundary(), pathi)

{

VdjSR.boundaryField()[pathi℄ == vetor::zero;

/*

forAll(alpha1.boundaryField()[pathi℄, faei)

{

if (alpha1.boundaryField()[pathi℄[faei℄ < lowerCrit.value())

{

VdjSR.boundaryField()[pathi℄[faei℄ =

(1.0 - alpha1.boundaryField()[pathi℄[faei℄)*0.0306*g.value();

}
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}

*/

}

VdjSR.orretBoundaryConditions();

phiVdjSR = fv::interpolate(VdjSR) & mesh.Sf();
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Chapter 7

Summary

A multiphase transient simulator, named vvpfFoam, has been developed that models the

dynamis of multiple �uid phases of a mixture, for example during asting. The develop-

ment was realized within the OpenFOAM framework and the starting template was the

interFoam solver. One of the aims with this solver is to simulate operational problems

related to unertainties in asting preditions of fresh onrete. This inludes the e�et

of the settlement of aggregates by gravity (i.e. segregation) as well as by shear (rate) in-

dued partile migration. Although the vvpfFoam solver was designed with fresh onrete

in mind, it an be used with other high visous mixtures as well, e.g. aluminum partiles

submerged in oil. Also, other types of ement-based material an be analyzed with this

solver, like the fresh mortar. For the most important analysis of this projet, simulations

were performed on superomputers at the Ielandi High Performane Computer Center

(ihp.is). The analysis inlude explanations of how reinforement shadows an form on

a onrete surfae after asting a wall setion and how the e�et of segregation an be

moved further downstream by advetion.

The solver has inorporated two theories:

• The �rst theory is the volume of �uid approah (VOF), whih is needed to divide

the system between the atmospheri air and the �uid mixture. The �uids do not

generally intermix (immisible) and thus usually have a lear boundary between

them.

• The seond theory is the implementation of �eld equation to be able to alulate

settling/segregation within the �uid mixture, by the e�et of gravity, by the shear

(rate) indued partile migration and/or by other means. The �uid phases are

usually in an intermixed stated (misible). The approah used is the Drift Flux

Model (DFM).

In addition to the issues mentioned in Setion 1.7, there are most ertainly other

urrently unknown problems with this solver. However, as the solver is open and liensed

under the GNU General Publi Liense (see Appendix C), as applies for OpenFOAM, the

67



IRF (RANNIS)

Grant No. 163382-05

user has the opportunity to investigate, test and repair it. The user an modify the ode,

add new apabilities and otherwise enhane (or downgrade) it to the spei�ation needed.
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Appendix A

Soure Code Overview

This is the overview of the soure ode �les of the solver vvpfFoam. At the time of writing,

it onsists of 27 �les. Few of these are more or less unhanged from the template solver

(namely the interFoam solver).

• vvpfFoam.C: The main �le, holding everything together.

• alpha1CourantNo.H: Courant number alulation.

• alpha1Eqn.H: Eq. (4.23) with ρ1 = constant (Page 36).

• alpha1EqnRho.H: Eq. (4.23) with ρ1 6= constant. See also Fig. 4.2, Page 37.

• alpha1EqnSubCyle.H: Iteration of Eq. (4.23).

• alpha1Interfae.H: Interfae treatment at boundary between α1 and α2.

• alphaDCourantNo.H: Courant number alulation.

• alphaDEqn.H: Eq. (4.20), Page 35.

• alphaDEqnSubCyle.H: Iteration of Eq. (4.20).

• apparentVisosity.H: Chapter 5, Page 49.

• omprsblContErrs.H: Monitoring of ∇ ·U. To ative this, ERROR_ANALYSIS must

be de�nded in maroDefinitions.H.

• orretPhi.H: Unhanged from the original interFoam solver.

• orretVisosity.H: Call to η1 (see apparentVisosity.H).

• reateFields.H: Creation of the main �eld variables.

• reateFuntions.H: Various funtions needed to ontrol the drift veloity at bound-

ary as well as in the bulk. See gravitySegregation.H and partileMigration.H.
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• densityContErrs.H: Monitoring of ∂ρ/∂t +∇ · (ρU) (see Eq. 4.46, Page 42). To
ative this, ERROR_ANALYSIS must be de�nded in maroDefinitions.H.

• driftVeloity.H: Setion 6.2, Page 60.

• enableFieldControl.H: Various riteria imposed on some of the �eld variables.

Also, alulation of Uin = U + ω × x if SINGLE_REFERENCE_FRAME is de�ned in

maroDefinitions.H (see the text below Eq. (4.43) on Page 41).

• gravitySegregation.H: Setion 6.3, Page 60.

• maroDefinitions.H: Conditional ompilation with maro de�nitions.

• partileMigration.H: Setion 6.4, Page 63.

• pEqn.H: Calulation of the pressure p_rgh either by Eq. (4.50) or by Eq. (4.51),

depending on if USE_PRESSURE_RESIDUE is de�nded in maroDefinitions.H or not.

Expliit veloity orretion is also done in this �le, .f. Setion 4.9.2.

• pEqnResidueErrs.H: Monitoring of ∇ ·R (see Eq. 4.52, Page 43). To ative this,

ERROR_ANALYSIS must be de�nded in maroDefinitions.H.

• rho1MaxMinFields.H: De�ning max and min of ρ1 as a �eld variable and setting

the orresponding value.

• setDeltaT.H: Adjustment of the time step ∆t, based on alpha1CourantNo.H and

alphaDCourantNo.H.

• transportProperties.H: Reads the ase �le ./onstant/transportProperties.

Note that this �le is relative to return visous_5() in apparentVisosity.H.

For most other rheologial models de�ned in apparentVisosity.H, the material

parameters are set in the soure �le, and thus a reompilation is needed for suh

usage. A di�erent return visous_X() must also be set. The user an rewrite

transportProperties.H for the partiular rheologial model needed.

• UEqn.H: Setup of H(U) either by Eq. (4.42) or by Eq (4.43), depending on if

SINGLE_REFERENCE_FRAME is de�ned in maroDefinitions.H or not. If the ase

�le ./system/fvSolution has momentumPreditor yes, Eq. (4.42)/(4.43) will be

solved in order to generate a �rst guess for the veloity U. Usually, the ondition

is set as momentumPreditor no.
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Appendix B

Compilation

B.1 ./Make/options

The solver an be ompiled within OpenFOAM 2.2.0 to 2.2.2. When ompiling the solver

vvpfFoam in OpenFOAM 2.2.0, the �le ./Make/options must onsist of the following:

EXE_INC = \

-I$(LIB_SRC)/transportModels/twoPhaseInterfaeProperties/ [ont. next line℄

alphaContatAngle/alphaContatAngle \

-I$(LIB_SRC)/transportModels \

-I$(LIB_SRC)/transportModels/inompressible/lnInlude \

-I$(LIB_SRC)/transportModels/interfaeProperties/lnInlude \

-I$(LIB_SRC)/finiteVolume/lnInlude

EXE_LIBS = \

-ltwoPhaseInterfaeProperties \

-lfiniteVolume

However, when ompiling the solver in OpenFOAM 2.2.1 or OpenFOAM 2.2.2, the �le

./Make/options must onsist of:

EXE_INC = \

-I$(LIB_SRC)/transportModels/twoPhaseProperties/ [ont. next line℄

alphaContatAngle/alphaContatAngle \

-I$(LIB_SRC)/transportModels \

-I$(LIB_SRC)/transportModels/inompressible/lnInlude \

-I$(LIB_SRC)/transportModels/interfaeProperties/lnInlude \

-I$(LIB_SRC)/finiteVolume/lnInlude

EXE_LIBS = \

-ltwoPhaseProperties \

-lfiniteVolume

Examples of eah setup is present in ./Make/options by the names options_OF220.txt

and options_OF221_OF222.txt, respetevly.
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B.2 Fedora Linux

The following ompile instrution has been tested on Fedora 18. The outome has also

been tarballed and moved to superomputers

28

using CentOS 7.x, without issues.

When ompiling OpenFOAM 2.2.0 to 2.2.2, the steps are as follows:

(1) In $HOME/.bashr, add

alias of220='soure $HOME/OpenFOAM/OpenFOAM-2.2.0/et/bashr && PS1="[2.2.0℄[\W℄ " '

alias of221='soure $HOME/OpenFOAM/OpenFOAM-2.2.0/et/bashr && PS1="[2.2.1℄[\W℄ " '

alias of222='soure $HOME/OpenFOAM/OpenFOAM-2.2.0/et/bashr && PS1="[2.2.2℄[\W℄ " '

(2) New terminal + of220

in $WM_THIRD_PARTY_DIR

tar xzf make-2.8.3.tar.gz

./makeCmake

(3) New terminal + of220

in $WM_THIRD_PARTY_DIR

./makeParaView -qmake $(whih qmake-qt4)

(4) New terminal + of220

in $WM_THIRD_PARTY_DIR

./Allwmake

(5) New terminal + of220

foam

export WM_NCOMPPROCS=$(at /pro/puinfo | grep proessor | w -l)

./Allwmake 2>&1 | tee wmake_log_file.txt

When �nished, make sure that openmpi exists in the third-party-dir:

ls $WM_THIRD_PARTY_DIR/platforms/linux64G/openmpi-1.6.3

B.3 Ubuntu Linux

OpenFOAM 2.2.2 an be ompiled on Ubuntu 18.04, by following the steps provided in

https://openfoamwiki.net/index.php/Installation/Linux/OpenFOAM-2.2.2/Ubuntu

The approah has been tested on a fresh Ubuntu 18.04 (Gnome) installation without

problems. Also, the solver vvpfFoam ompiles and run without issues. On this note, the

latest part of the solver development was done on omputer running Xubuntu 18.04, using

OpenFOAM binaries generated on a Fedora Linux workstation.

28

Owned and hosted by the Ielandi High Performane Computing Centre (ihp.is).
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Appendix C

GNU General Publi Liense

GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, In. <http://fsf.org/> Everyone is permitted to opy and distribute

verbatim opies of this liense doument, but hanging it is not allowed.

Preamble

The GNU General Publi Liense is a free, opyleft liense for software and other kinds of works.

The lienses for most software and other pratial works are designed to take away your freedom to share and hange

the works. By ontrast, the GNU General Publi Liense is intended to guarantee your freedom to share and hange all

versions of a program�to make sure it remains free software for all its users. We, the Free Software Foundation, use the

GNU General Publi Liense for most of our software; it applies also to any other work released this way by its authors.

You an apply it to your programs, too.

When we speak of free software, we are referring to freedom, not prie. Our General Publi Lienses are designed to

make sure that you have the freedom to distribute opies of free software (and harge for them if you wish), that you reeive

soure ode or an get it if you want it, that you an hange the software or use piees of it in new free programs, and that

you know you an do these things.

To protet your rights, we need to prevent others from denying you these rights or asking you to surrender the rights.

Therefore, you have ertain responsibilities if you distribute opies of the software, or if you modify it: responsibilities to

respet the freedom of others.

For example, if you distribute opies of suh a program, whether gratis or for a fee, you must pass on to the reipients

the same freedoms that you reeived. You must make sure that they, too, reeive or an get the soure ode. And you must

show them these terms so they know their rights.

Developers that use the GNU GPL protet your rights with two steps: (1) assert opyright on the software, and (2)

o�er you this Liense giving you legal permission to opy, distribute and/or modify it.

For the developers' and authors' protetion, the GPL learly explains that there is no warranty for this free software.

For both users' and authors' sake, the GPL requires that modi�ed versions be marked as hanged, so that their problems

will not be attributed erroneously to authors of previous versions.

Some devies are designed to deny users aess to install or run modi�ed versions of the software inside them, although

the manufaturer an do so. This is fundamentally inompatible with the aim of proteting users' freedom to hange the

software. The systemati pattern of suh abuse ours in the area of produts for individuals to use, whih is preisely where

it is most unaeptable. Therefore, we have designed this version of the GPL to prohibit the pratie for those produts.

If suh problems arise substantially in other domains, we stand ready to extend this provision to those domains in future

versions of the GPL, as needed to protet the freedom of users.

Finally, every program is threatened onstantly by software patents. States should not allow patents to restrit

development and use of software on general-purpose omputers, but in those that do, we wish to avoid the speial danger

that patents applied to a free program ould make it e�etively proprietary. To prevent this, the GPL assures that patents

annot be used to render the program non-free.

The preise terms and onditions for opying, distribution and modi�ation follow.

TERMS AND CONDITIONS

0. De�nitions. "This Liense" refers to version 3 of the GNU General Publi Liense. "Copyright" also means

opyright-like laws that apply to other kinds of works, suh as semiondutor masks.

"The Program" refers to any opyrightable work liensed under this Liense. Eah liensee is addressed as "you".

"Liensees" and "reipients" may be individuals or organizations.

To "modify" a work means to opy from or adapt all or part of the work in a fashion requiring opyright permission,

other than the making of an exat opy. The resulting work is alled a "modi�ed version" of the earlier work or a work

"based on" the earlier work.

A "overed work" means either the unmodi�ed Program or a work based on the Program.
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To "propagate" a work means to do anything with it that, without permission, would make you diretly or seondarily

liable for infringement under appliable opyright law, exept exeuting it on a omputer or modifying a private opy.

Propagation inludes opying, distribution (with or without modi�ation), making available to the publi, and in some

ountries other ativities as well.

To "onvey" a work means any kind of propagation that enables other parties to make or reeive opies. Mere interation

with a user through a omputer network, with no transfer of a opy, is not onveying.

An interative user interfae displays "Appropriate Legal Noties" to the extent that it inludes a onvenient and

prominently visible feature that (1) displays an appropriate opyright notie, and (2) tells the user that there is no warranty

for the work (exept to the extent that warranties are provided), that liensees may onvey the work under this Liense,

and how to view a opy of this Liense. If the interfae presents a list of user ommands or options, suh as a menu, a

prominent item in the list meets this riterion.

1. Soure Code. The "soure ode" for a work means the preferred form of the work for making modi�ations to it.

"Objet ode" means any non-soure form of a work.

A "Standard Interfae" means an interfae that either is an o�ial standard de�ned by a reognized standards body,

or, in the ase of interfaes spei�ed for a partiular programming language, one that is widely used among developers

working in that language.

The "System Libraries" of an exeutable work inlude anything, other than the work as a whole, that (a) is inluded

in the normal form of pakaging a Major Component, but whih is not part of that Major Component, and (b) serves only

to enable use of the work with that Major Component, or to implement a Standard Interfae for whih an implementation

is available to the publi in soure ode form. A "Major Component", in this ontext, means a major essential omponent

(kernel, window system, and so on) of the spei� operating system (if any) on whih the exeutable work runs, or a ompiler

used to produe the work, or an objet ode interpreter used to run it.

The "Corresponding Soure" for a work in objet ode form means all the soure ode needed to generate, install, and

(for an exeutable work) run the objet ode and to modify the work, inluding sripts to ontrol those ativities. However,

it does not inlude the work's System Libraries, or general-purpose tools or generally available free programs whih are used

unmodi�ed in performing those ativities but whih are not part of the work. For example, Corresponding Soure inludes

interfae de�nition �les assoiated with soure �les for the work, and the soure ode for shared libraries and dynamially

linked subprograms that the work is spei�ally designed to require, suh as by intimate data ommuniation or ontrol

�ow between those subprograms and other parts of the work.

The Corresponding Soure need not inlude anything that users an regenerate automatially from other parts of the

Corresponding Soure.

The Corresponding Soure for a work in soure ode form is that same work.

2. Basi Permissions. All rights granted under this Liense are granted for the term of opyright on the Program,

and are irrevoable provided the stated onditions are met. This Liense expliitly a�rms your unlimited permission to

run the unmodi�ed Program. The output from running a overed work is overed by this Liense only if the output, given

its ontent, onstitutes a overed work. This Liense aknowledges your rights of fair use or other equivalent, as provided

by opyright law.

You may make, run and propagate overed works that you do not onvey, without onditions so long as your liense

otherwise remains in fore. You may onvey overed works to others for the sole purpose of having them make modi�ations

exlusively for you, or provide you with failities for running those works, provided that you omply with the terms of this

Liense in onveying all material for whih you do not ontrol opyright. Those thus making or running the overed works

for you must do so exlusively on your behalf, under your diretion and ontrol, on terms that prohibit them from making

any opies of your opyrighted material outside their relationship with you.

Conveying under any other irumstanes is permitted solely under the onditions stated below. Subliensing is not

allowed; setion 10 makes it unneessary.

3. Proteting Users' Legal Rights From Anti-Cirumvention Law. No overed work shall be deemed part of

an e�etive tehnologial measure under any appliable law ful�lling obligations under artile 11 of the WIPO opyright

treaty adopted on 20 Deember 1996, or similar laws prohibiting or restriting irumvention of suh measures.

When you onvey a overed work, you waive any legal power to forbid irumvention of tehnologial measures to the

extent suh irumvention is e�eted by exerising rights under this Liense with respet to the overed work, and you

dislaim any intention to limit operation or modi�ation of the work as a means of enforing, against the work's users, your

or third parties' legal rights to forbid irumvention of tehnologial measures.

4. Conveying Verbatim Copies. You may onvey verbatim opies of the Program's soure ode as you reeive it,

in any medium, provided that you onspiuously and appropriately publish on eah opy an appropriate opyright notie;

keep intat all noties stating that this Liense and any non-permissive terms added in aord with setion 7 apply to the

ode; keep intat all noties of the absene of any warranty; and give all reipients a opy of this Liense along with the

Program.

You may harge any prie or no prie for eah opy that you onvey, and you may o�er support or warranty protetion

for a fee.

5. Conveying Modi�ed Soure Versions. You may onvey a work based on the Program, or the modi�ations to

produe it from the Program, in the form of soure ode under the terms of setion 4, provided that you also meet all of

these onditions:

a) The work must arry prominent noties stating that you modi�ed it, and giving a relevant date.

b) The work must arry prominent noties stating that it is released under this Liense and any onditions added under

setion 7. This requirement modi�es the requirement in setion 4 to "keep intat all noties".
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) You must liense the entire work, as a whole, under this Liense to anyone who omes into possession of a opy.

This Liense will therefore apply, along with any appliable setion 7 additional terms, to the whole of the work, and all its

parts, regardless of how they are pakaged. This Liense gives no permission to liense the work in any other way, but it

does not invalidate suh permission if you have separately reeived it.

d) If the work has interative user interfaes, eah must display Appropriate Legal Noties; however, if the Program

has interative interfaes that do not display Appropriate Legal Noties, your work need not make them do so.

A ompilation of a overed work with other separate and independent works, whih are not by their nature extensions

of the overed work, and whih are not ombined with it suh as to form a larger program, in or on a volume of a storage

or distribution medium, is alled an "aggregate" if the ompilation and its resulting opyright are not used to limit the

aess or legal rights of the ompilation's users beyond what the individual works permit. Inlusion of a overed work in

an aggregate does not ause this Liense to apply to the other parts of the aggregate.

6. Conveying Non-Soure Forms. You may onvey a overed work in objet ode form under the terms of setions

4 and 5, provided that you also onvey the mahine-readable Corresponding Soure under the terms of this Liense, in one

of these ways:

a) Convey the objet ode in, or embodied in, a physial produt (inluding a physial distribution medium), aom-

panied by the Corresponding Soure �xed on a durable physial medium ustomarily used for software interhange.

b) Convey the objet ode in, or embodied in, a physial produt (inluding a physial distribution medium), aom-

panied by a written o�er, valid for at least three years and valid for as long as you o�er spare parts or ustomer support

for that produt model, to give anyone who possesses the objet ode either (1) a opy of the Corresponding Soure for all

the software in the produt that is overed by this Liense, on a durable physial medium ustomarily used for software

interhange, for a prie no more than your reasonable ost of physially performing this onveying of soure, or (2) aess

to opy the Corresponding Soure from a network server at no harge.

) Convey individual opies of the objet ode with a opy of the written o�er to provide the Corresponding Soure.

This alternative is allowed only oasionally and nonommerially, and only if you reeived the objet ode with suh an

o�er, in aord with subsetion 6b.

d) Convey the objet ode by o�ering aess from a designated plae (gratis or for a harge), and o�er equivalent

aess to the Corresponding Soure in the same way through the same plae at no further harge. You need not require

reipients to opy the Corresponding Soure along with the objet ode. If the plae to opy the objet ode is a network

server, the Corresponding Soure may be on a di�erent server (operated by you or a third party) that supports equivalent

opying failities, provided you maintain lear diretions next to the objet ode saying where to �nd the Corresponding

Soure. Regardless of what server hosts the Corresponding Soure, you remain obligated to ensure that it is available for

as long as needed to satisfy these requirements.

e) Convey the objet ode using peer-to-peer transmission, provided you inform other peers where the objet ode and

Corresponding Soure of the work are being o�ered to the general publi at no harge under subsetion 6d.

A separable portion of the objet ode, whose soure ode is exluded from the Corresponding Soure as a System

Library, need not be inluded in onveying the objet ode work.

A "User Produt" is either (1) a "onsumer produt", whih means any tangible personal property whih is normally

used for personal, family, or household purposes, or (2) anything designed or sold for inorporation into a dwelling. In

determining whether a produt is a onsumer produt, doubtful ases shall be resolved in favor of overage. For a partiular

produt reeived by a partiular user, "normally used" refers to a typial or ommon use of that lass of produt, regardless

of the status of the partiular user or of the way in whih the partiular user atually uses, or expets or is expeted to use,

the produt. A produt is a onsumer produt regardless of whether the produt has substantial ommerial, industrial or

non-onsumer uses, unless suh uses represent the only signi�ant mode of use of the produt.

"Installation Information" for a User Produt means any methods, proedures, authorization keys, or other information

required to install and exeute modi�ed versions of a overed work in that User Produt from a modi�ed version of its

Corresponding Soure. The information must su�e to ensure that the ontinued funtioning of the modi�ed objet ode

is in no ase prevented or interfered with solely beause modi�ation has been made.

If you onvey an objet ode work under this setion in, or with, or spei�ally for use in, a User Produt, and the

onveying ours as part of a transation in whih the right of possession and use of the User Produt is transferred to the

reipient in perpetuity or for a �xed term (regardless of how the transation is haraterized), the Corresponding Soure

onveyed under this setion must be aompanied by the Installation Information. But this requirement does not apply if

neither you nor any third party retains the ability to install modi�ed objet ode on the User Produt (for example, the

work has been installed in ROM).

The requirement to provide Installation Information does not inlude a requirement to ontinue to provide support

servie, warranty, or updates for a work that has been modi�ed or installed by the reipient, or for the User Produt in

whih it has been modi�ed or installed. Aess to a network may be denied when the modi�ation itself materially and

adversely a�ets the operation of the network or violates the rules and protools for ommuniation aross the network.

Corresponding Soure onveyed, and Installation Information provided, in aord with this setion must be in a format

that is publily doumented (and with an implementation available to the publi in soure ode form), and must require

no speial password or key for unpaking, reading or opying.

7. Additional Terms. "Additional permissions" are terms that supplement the terms of this Liense by making

exeptions from one or more of its onditions. Additional permissions that are appliable to the entire Program shall be

treated as though they were inluded in this Liense, to the extent that they are valid under appliable law. If additional

permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire

Program remains governed by this Liense without regard to the additional permissions.
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When you onvey a opy of a overed work, you may at your option remove any additional permissions from that opy,

or from any part of it. (Additional permissions may be written to require their own removal in ertain ases when you

modify the work.) You may plae additional permissions on material, added by you to a overed work, for whih you have

or an give appropriate opyright permission.

Notwithstanding any other provision of this Liense, for material you add to a overed work, you may (if authorized

by the opyright holders of that material) supplement the terms of this Liense with terms:

a) Dislaiming warranty or limiting liability di�erently from the terms of setions 15 and 16 of this Liense; or

b) Requiring preservation of spei�ed reasonable legal noties or author attributions in that material or in the Appro-

priate Legal Noties displayed by works ontaining it; or

) Prohibiting misrepresentation of the origin of that material, or requiring that modi�ed versions of suh material be

marked in reasonable ways as di�erent from the original version; or

d) Limiting the use for publiity purposes of names of liensors or authors of the material; or

e) Delining to grant rights under trademark law for use of some trade names, trademarks, or servie marks; or

f) Requiring indemni�ation of liensors and authors of that material by anyone who onveys the material (or modi�ed

versions of it) with ontratual assumptions of liability to the reipient, for any liability that these ontratual assumptions

diretly impose on those liensors and authors.

All other non-permissive additional terms are onsidered "further restritions" within the meaning of setion 10. If the

Program as you reeived it, or any part of it, ontains a notie stating that it is governed by this Liense along with a term

that is a further restrition, you may remove that term. If a liense doument ontains a further restrition but permits

reliensing or onveying under this Liense, you may add to a overed work material governed by the terms of that liense

doument, provided that the further restrition does not survive suh reliensing or onveying.

If you add terms to a overed work in aord with this setion, you must plae, in the relevant soure �les, a statement

of the additional terms that apply to those �les, or a notie indiating where to �nd the appliable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written liense, or stated as

exeptions; the above requirements apply either way.

8. Termination. You may not propagate or modify a overed work exept as expressly provided under this Liense.

Any attempt otherwise to propagate or modify it is void, and will automatially terminate your rights under this Liense

(inluding any patent lienses granted under the third paragraph of setion 11).

However, if you ease all violation of this Liense, then your liense from a partiular opyright holder is reinstated

(a) provisionally, unless and until the opyright holder expliitly and �nally terminates your liense, and (b) permanently,

if the opyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the essation.

Moreover, your liense from a partiular opyright holder is reinstated permanently if the opyright holder noti�es you

of the violation by some reasonable means, this is the �rst time you have reeived notie of violation of this Liense (for

any work) from that opyright holder, and you ure the violation prior to 30 days after your reeipt of the notie.

Termination of your rights under this setion does not terminate the lienses of parties who have reeived opies or

rights from you under this Liense. If your rights have been terminated and not permanently reinstated, you do not qualify

to reeive new lienses for the same material under setion 10.

9. Aeptane Not Required for Having Copies. You are not required to aept this Liense in order to reeive or

run a opy of the Program. Anillary propagation of a overed work ourring solely as a onsequene of using peer-to-peer

transmission to reeive a opy likewise does not require aeptane. However, nothing other than this Liense grants you

permission to propagate or modify any overed work. These ations infringe opyright if you do not aept this Liense.

Therefore, by modifying or propagating a overed work, you indiate your aeptane of this Liense to do so.

10. Automati Liensing of Downstream Reipients. Eah time you onvey a overed work, the reipient

automatially reeives a liense from the original liensors, to run, modify and propagate that work, subjet to this Liense.

You are not responsible for enforing ompliane by third parties with this Liense.

An "entity transation" is a transation transferring ontrol of an organization, or substantially all assets of one, or

subdividing an organization, or merging organizations. If propagation of a overed work results from an entity transation,

eah party to that transation who reeives a opy of the work also reeives whatever lienses to the work the party's

predeessor in interest had or ould give under the previous paragraph, plus a right to possession of the Corresponding

Soure of the work from the predeessor in interest, if the predeessor has it or an get it with reasonable e�orts.

You may not impose any further restritions on the exerise of the rights granted or a�rmed under this Liense. For

example, you may not impose a liense fee, royalty, or other harge for exerise of rights granted under this Liense, and you

may not initiate litigation (inluding a ross-laim or ounterlaim in a lawsuit) alleging that any patent laim is infringed

by making, using, selling, o�ering for sale, or importing the Program or any portion of it.

11. Patents. A "ontributor" is a opyright holder who authorizes use under this Liense of the Program or a work

on whih the Program is based. The work thus liensed is alled the ontributor's "ontributor version".

A ontributor's "essential patent laims" are all patent laims owned or ontrolled by the ontributor, whether already

aquired or hereafter aquired, that would be infringed by some manner, permitted by this Liense, of making, using, or

selling its ontributor version, but do not inlude laims that would be infringed only as a onsequene of further modi�ation

of the ontributor version. For purposes of this de�nition, "ontrol" inludes the right to grant patent sublienses in a manner

onsistent with the requirements of this Liense.

Eah ontributor grants you a non-exlusive, worldwide, royalty-free patent liense under the ontributor's essential

patent laims, to make, use, sell, o�er for sale, import and otherwise run, modify and propagate the ontents of its ontributor

version.
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In the following three paragraphs, a "patent liense" is any express agreement or ommitment, however denominated,

not to enfore a patent (suh as an express permission to pratie a patent or ovenant not to sue for patent infringement).

To "grant" suh a patent liense to a party means to make suh an agreement or ommitment not to enfore a patent

against the party.

If you onvey a overed work, knowingly relying on a patent liense, and the Corresponding Soure of the work is not

available for anyone to opy, free of harge and under the terms of this Liense, through a publily available network server

or other readily aessible means, then you must either (1) ause the Corresponding Soure to be so available, or (2) arrange

to deprive yourself of the bene�t of the patent liense for this partiular work, or (3) arrange, in a manner onsistent with

the requirements of this Liense, to extend the patent liense to downstream reipients. "Knowingly relying" means you

have atual knowledge that, but for the patent liense, your onveying the overed work in a ountry, or your reipient's

use of the overed work in a ountry, would infringe one or more identi�able patents in that ountry that you have reason

to believe are valid.

If, pursuant to or in onnetion with a single transation or arrangement, you onvey, or propagate by prouring

onveyane of, a overed work, and grant a patent liense to some of the parties reeiving the overed work authorizing them

to use, propagate, modify or onvey a spei� opy of the overed work, then the patent liense you grant is automatially

extended to all reipients of the overed work and works based on it.

A patent liense is "disriminatory" if it does not inlude within the sope of its overage, prohibits the exerise of, or

is onditioned on the non-exerise of one or more of the rights that are spei�ally granted under this Liense. You may

not onvey a overed work if you are a party to an arrangement with a third party that is in the business of distributing

software, under whih you make payment to the third party based on the extent of your ativity of onveying the work, and

under whih the third party grants, to any of the parties who would reeive the overed work from you, a disriminatory

patent liense (a) in onnetion with opies of the overed work onveyed by you (or opies made from those opies), or (b)

primarily for and in onnetion with spei� produts or ompilations that ontain the overed work, unless you entered

into that arrangement, or that patent liense was granted, prior to 28 Marh 2007.

Nothing in this Liense shall be onstrued as exluding or limiting any implied liense or other defenses to infringement

that may otherwise be available to you under appliable patent law.

12. No Surrender of Others' Freedom. If onditions are imposed on you (whether by ourt order, agreement or

otherwise) that ontradit the onditions of this Liense, they do not exuse you from the onditions of this Liense. If you

annot onvey a overed work so as to satisfy simultaneously your obligations under this Liense and any other pertinent

obligations, then as a onsequene you may not onvey it at all. For example, if you agree to terms that obligate you to

ollet a royalty for further onveying from those to whom you onvey the Program, the only way you ould satisfy both

those terms and this Liense would be to refrain entirely from onveying the Program.

13. Use with the GNU A�ero General Publi Liense. Notwithstanding any other provision of this Liense,

you have permission to link or ombine any overed work with a work liensed under version 3 of the GNU A�ero General

Publi Liense into a single ombined work, and to onvey the resulting work. The terms of this Liense will ontinue to

apply to the part whih is the overed work, but the speial requirements of the GNU A�ero General Publi Liense, setion

13, onerning interation through a network will apply to the ombination as suh.

14. Revised Versions of this Liense. The Free Software Foundation may publish revised and/or new versions of

the GNU General Publi Liense from time to time. Suh new versions will be similar in spirit to the present version, but

may di�er in detail to address new problems or onerns.

Eah version is given a distinguishing version number. If the Program spei�es that a ertain numbered version of the

GNU General Publi Liense "or any later version" applies to it, you have the option of following the terms and onditions

either of that numbered version or of any later version published by the Free Software Foundation. If the Program does

not speify a version number of the GNU General Publi Liense, you may hoose any version ever published by the Free

Software Foundation.

If the Program spei�es that a proxy an deide whih future versions of the GNU General Publi Liense an be used,

that proxy's publi statement of aeptane of a version permanently authorizes you to hoose that version for the Program.

Later liense versions may give you additional or di�erent permissions. However, no additional obligations are imposed

on any author or opyright holder as a result of your hoosing to follow a later version.

15. Dislaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-

MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLD-

ERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY

AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU

ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO

IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS

THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,

SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE

THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCU-

RATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE

WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Setions 15 and 16. If the dislaimer of warranty and limitation of liability provided
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above annot be given loal legal e�et aording to their terms, reviewing ourts shall apply loal law that most losely

approximates an absolute waiver of all ivil liability in onnetion with the Program, unless a warranty or assumption of

liability aompanies a opy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
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