Erratum and Nomenclature for:

Rheology of Particle Suspensions - Fresh Concrete, Mortar and Cement Paste with Various Types of Lignosulfonates ISBN 82-471-5566-4, ISSN 0809-103X

Jon Elvar Wallevik*

Last updated August 15, 2008 www.vvpf.net

Abstract

Like in most/all textbooks and other written documents, typesetting error are always present. The erratum written in this document applies for: Wallevik, J. E. (2003); Rheology of Particle Suspensions - Fresh Concrete, Mortar and Cement Paste with Various Types of Lignosulfonates (Ph.D.-thesis); Department of Structural Engineering, The Norwegian University of Science and Technology, ISBN 82-471-5566-4, ISSN 0809-103X.

1 Erratum

- 1. The name of the variable $\dot{\varepsilon}$ is not strain rate tensor, but the rate-of-deformation tensor.
- 2. The term coagulation state U_3 should be written as coagulated state.
- 3. p.42: "v = 3.5 cm/s" \Rightarrow "v = 0.8 cm/s".
- 4. p.109: $n 1 \Rightarrow n 2$; i.e. the correct equation is $\alpha_{\rm H} = H \sqrt{((1 R^2)/R^2)(1/(n 2))}$.
- 5. p.153: "6) HMW Ca" \Rightarrow "6) LMW Ca".
- 6. p.165: The two expressions $\partial v_{\theta}/\partial r = 0$ and $\partial v_{\theta}/\partial r \leq 0$ should be written as $\partial v_{\theta}/\partial z = 0$ and $\partial v_{\theta}/\partial z \leq 0$.

^{*}Email: jon.wallevik@vvpf.net

7. p.388, footnote 14: The expression (∇ · σ) · v ≈ -v · ∇p = dp/dt is wrong (a minus sign is missing).
It should be (∇ · σ) · v ≈ -v · ∇p = -dp/dt.

2 Nomenclature

- f objective function [N³m³]
- \mathbf{g} gravity $[m/s^2]$
- h height of the inner cylinder = 116 mm
- H_3 coagulation rate [s⁻¹]
- I_3 dispersion rate [s⁻¹]
- K special function used in H_3 [s⁻³]
- $R_{\rm i}$ radius of the inner cylinder = 85 mm
- $R_{\rm o}$ radius of the outer cylinder = 101 mm

$$t \qquad \text{time } (t \in [0, 50 \, \text{s}])$$

- $t_{\rm m}$ time from water addition $(t_{\rm m} \in [0, 102 \, {\rm min}])$
- T measured torque [Nm]
- $T_{\rm c}$ computed torque [Nm]
- $U_{3[0]}$ reversible coagulated state at t = 0 [-]
- \mathbf{v} velocity of the suspension [m/s]

Greek letters

- $\dot{\gamma}$ shear rate [s⁻¹]
- $\dot{\varepsilon}$ rate–of–deformation tensor [s⁻¹]
- η shear viscosity (or equally, apparent viscosity) [Pa · s]
- μ plastic viscosity [Pa · s]
- $\mu_{[t]}$ total plastic viscosity [Pa · s]
- ρ density of the cement paste [kg/m³]
- σ constitutive equation [Pa]
- τ_0 yield value (or equally, yield stress; c.f. British Standard BS 5168:1975) [Pa]
- $\tau_{0[t]}$ total yield value [Pa]
- Φ phase volume of the cement paste [-]
- $\omega_{\rm o}$ angular velocity of the outer cylinder $(R_{\rm o})$ [rad/s]